If L = \sum_{j=1}X_j^2 + X_0 is a Hormander partial differential operator in R^N, we give sufficient conditions on the X_j's for the existence of a Lie group structure G = (R^N,*), not necessarily nilpotent, such that L is left invariant on G. We also investigate the existence of a global fundamental solution Gamma for L, providing results ensuring a suitable left invariance property of. Examples are given for operators L to which our results apply: some are new, some appear in recent literature, usually quoted as Kolmogorov-Fokker-Planck type operators.

Lie groups related to Hörmander operators and Kolmogorov-Fokker-Planck equations

BONFIGLIOLI, ANDREA;LANCONELLI, ERMANNO
2012

Abstract

If L = \sum_{j=1}X_j^2 + X_0 is a Hormander partial differential operator in R^N, we give sufficient conditions on the X_j's for the existence of a Lie group structure G = (R^N,*), not necessarily nilpotent, such that L is left invariant on G. We also investigate the existence of a global fundamental solution Gamma for L, providing results ensuring a suitable left invariance property of. Examples are given for operators L to which our results apply: some are new, some appear in recent literature, usually quoted as Kolmogorov-Fokker-Planck type operators.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/92666
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 14
social impact