This proposal introduces the quantum implementation of a binary classifier based on cosine similarity between data vectors. The proposed quantum algorithm presents time complexity that is logarithmic in the product of the training set cardinality and the dimension of the vectors. It is based just on a suitable state preparation like the retrieval from a QRAM, a SWAP test circuit, and a measurement process on a single qubit. An implementation on an IBM quantum processor is presented.

Pastorello D., Blanzieri E. (2021). A Quantum Binary Classifier based on Cosine Similarity. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA : Institute of Electrical and Electronics Engineers Inc. [10.1109/QCE52317.2021.00086].

A Quantum Binary Classifier based on Cosine Similarity

Pastorello D.;
2021

Abstract

This proposal introduces the quantum implementation of a binary classifier based on cosine similarity between data vectors. The proposed quantum algorithm presents time complexity that is logarithmic in the product of the training set cardinality and the dimension of the vectors. It is based just on a suitable state preparation like the retrieval from a QRAM, a SWAP test circuit, and a measurement process on a single qubit. An implementation on an IBM quantum processor is presented.
2021
Proceedings - 2021 IEEE International Conference on Quantum Computing and Engineering, QCE 2021
477
478
Pastorello D., Blanzieri E. (2021). A Quantum Binary Classifier based on Cosine Similarity. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA : Institute of Electrical and Electronics Engineers Inc. [10.1109/QCE52317.2021.00086].
Pastorello D.; Blanzieri E.
File in questo prodotto:
File Dimensione Formato  
Qcosine.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 379.68 kB
Formato Adobe PDF
379.68 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/926055
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact