In the context of quantum-inspired machine learning, remarkable mathematical tools for solving classification problems are given by some methods of quantum state discrimination. In this respect, quantum-inspired classifiers based on nearest centroid and Helstrom discrimination have been efficiently implemented on classical computers. We present a local approach combining the kNN algorithm to some quantum-inspired classifiers.

Enrico Blanzieri, Roberto Leporini, Davide Pastorello (2023). Local Approach to Quantum-inspired Classification. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 62(1), 1-10 [10.1007/s10773-022-05263-y].

Local Approach to Quantum-inspired Classification

Davide Pastorello
2023

Abstract

In the context of quantum-inspired machine learning, remarkable mathematical tools for solving classification problems are given by some methods of quantum state discrimination. In this respect, quantum-inspired classifiers based on nearest centroid and Helstrom discrimination have been efficiently implemented on classical computers. We present a local approach combining the kNN algorithm to some quantum-inspired classifiers.
2023
Enrico Blanzieri, Roberto Leporini, Davide Pastorello (2023). Local Approach to Quantum-inspired Classification. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 62(1), 1-10 [10.1007/s10773-022-05263-y].
Enrico Blanzieri; Roberto Leporini; Davide Pastorello
File in questo prodotto:
File Dimensione Formato  
Local_QIC.pdf

Open Access dal 21/12/2023

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 598.23 kB
Formato Adobe PDF
598.23 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/926048
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact