In quantum machine learning, feature vectors are encoded into quantum states. Measurements for the discrimination of states are useful tools for classification problems. Classification algorithms inspired by quantum state discrimination have recently been implemented on classical computers. We present a local approach combining Vonoroi-type tessellation of a training set with pretty-good measurements for quantum state discrimination.

Leporini R., Pastorello D. (2022). Quantum-Inspired Classification Based on Voronoi Tessellation and Pretty-Good Measurements. QUANTUM REPORTS, 4(4), 434-441 [10.3390/quantum4040031].

Quantum-Inspired Classification Based on Voronoi Tessellation and Pretty-Good Measurements

Pastorello D.
2022

Abstract

In quantum machine learning, feature vectors are encoded into quantum states. Measurements for the discrimination of states are useful tools for classification problems. Classification algorithms inspired by quantum state discrimination have recently been implemented on classical computers. We present a local approach combining Vonoroi-type tessellation of a training set with pretty-good measurements for quantum state discrimination.
2022
Leporini R., Pastorello D. (2022). Quantum-Inspired Classification Based on Voronoi Tessellation and Pretty-Good Measurements. QUANTUM REPORTS, 4(4), 434-441 [10.3390/quantum4040031].
Leporini R.; Pastorello D.
File in questo prodotto:
File Dimensione Formato  
quantumrep-04-00031.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 314 kB
Formato Adobe PDF
314 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/926047
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact