Consider a finite dimensional complex Hilbert space , with , define , and let be the unique regular Borel positive measure invariant under the action of the unitary operators in , with . We prove that if a complex frame function satisfies , then it verifies Gleason's statement: there is a unique linear operator such that for every is Hermitean when f is real. No boundedness requirement is thus assumed on f a priori.

Moretti, V., Pastorello, D. (2013). Generalized Complex Spherical Harmonics, Frame Functions, and Gleason Theorem. ANNALES HENRI POINCARE', 14(5), 1435-1443 [10.1007/s00023-012-0220-x].

Generalized Complex Spherical Harmonics, Frame Functions, and Gleason Theorem

Pastorello, D
2013

Abstract

Consider a finite dimensional complex Hilbert space , with , define , and let be the unique regular Borel positive measure invariant under the action of the unitary operators in , with . We prove that if a complex frame function satisfies , then it verifies Gleason's statement: there is a unique linear operator such that for every is Hermitean when f is real. No boundedness requirement is thus assumed on f a priori.
2013
Moretti, V., Pastorello, D. (2013). Generalized Complex Spherical Harmonics, Frame Functions, and Gleason Theorem. ANNALES HENRI POINCARE', 14(5), 1435-1443 [10.1007/s00023-012-0220-x].
Moretti, V; Pastorello, D
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/926037
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact