An adiabatic quantum algorithm is essentially given by three elements: An initial Hamiltonian with known ground state, a problem Hamiltonian whose ground state corresponds to the solution of the given problem, and an evolution schedule such that the adiabatic condition is satisfied. A correct choice of these elements is crucial for an efficient adiabatic quantum computation. In this paper, we propose a hybrid quantum-classical algorithm that, by solving optimization problems with an adiabatic machine, determines a problem Hamiltonian assuming restrictions on the class of available problem Hamiltonians. The scheme is based on repeated calls to the quantum machine into a classical iterative structure. In particular, we suggest a technique to estimate the encoding of a given optimization problem into a problem Hamiltonian and we prove the convergence of the algorithm.

Pastorello D., Blanzieri E., Cavecchia V. (2021). Learning adiabatic quantum algorithms over optimization problems. QUANTUM MACHINE INTELLIGENCE, 3(1), 3:2-1-3:2-19 [10.1007/s42484-020-00030-w].

Learning adiabatic quantum algorithms over optimization problems

Pastorello D.
Primo
;
2021

Abstract

An adiabatic quantum algorithm is essentially given by three elements: An initial Hamiltonian with known ground state, a problem Hamiltonian whose ground state corresponds to the solution of the given problem, and an evolution schedule such that the adiabatic condition is satisfied. A correct choice of these elements is crucial for an efficient adiabatic quantum computation. In this paper, we propose a hybrid quantum-classical algorithm that, by solving optimization problems with an adiabatic machine, determines a problem Hamiltonian assuming restrictions on the class of available problem Hamiltonians. The scheme is based on repeated calls to the quantum machine into a classical iterative structure. In particular, we suggest a technique to estimate the encoding of a given optimization problem into a problem Hamiltonian and we prove the convergence of the algorithm.
2021
Pastorello D., Blanzieri E., Cavecchia V. (2021). Learning adiabatic quantum algorithms over optimization problems. QUANTUM MACHINE INTELLIGENCE, 3(1), 3:2-1-3:2-19 [10.1007/s42484-020-00030-w].
Pastorello D.; Blanzieri E.; Cavecchia V.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/926011
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact