In this paper, we present a novel strategy to solve optimization problems within a hybrid quantum-classical scheme based on quantum annealing, with a particular focus on QUBO problems. The proposed algorithm implements an iterative structure where the representation of an objective function into the annealer architecture is learned and already visited solutions are penalized by a tabu-inspired search. The result is a heuristic search equipped with a learning mechanism to improve the encoding of the problem into the quantum architecture. We prove the convergence of the algorithm to a global optimum in the case of general QUBO problems. Our technique is an alternative to the direct reduction of a given optimization problem into the sparse annealer graph.

Davide Pastorello, Enrico Blanzieri (2019). Quantum annealing learning search for solving QUBO problems. QUANTUM INFORMATION PROCESSING, 18(10), 303-1-303-17 [10.1007/s11128-019-2418-z].

Quantum annealing learning search for solving QUBO problems

Davide Pastorello
;
2019

Abstract

In this paper, we present a novel strategy to solve optimization problems within a hybrid quantum-classical scheme based on quantum annealing, with a particular focus on QUBO problems. The proposed algorithm implements an iterative structure where the representation of an objective function into the annealer architecture is learned and already visited solutions are penalized by a tabu-inspired search. The result is a heuristic search equipped with a learning mechanism to improve the encoding of the problem into the quantum architecture. We prove the convergence of the algorithm to a global optimum in the case of general QUBO problems. Our technique is an alternative to the direct reduction of a given optimization problem into the sparse annealer graph.
2019
Davide Pastorello, Enrico Blanzieri (2019). Quantum annealing learning search for solving QUBO problems. QUANTUM INFORMATION PROCESSING, 18(10), 303-1-303-17 [10.1007/s11128-019-2418-z].
Davide Pastorello; Enrico Blanzieri
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/925936
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact