Redox Flow Batteries (RFB) are an ideal choice for large stationary applications. Among the different chemistries that can be exploited, all-copper aqueous RFB (CuRFB) use low-cost, earth-abundant raw materials with a well defined European supply chain. The CuRFB takes advantage of the three oxidation states of copper. As Cu(I) is not stable in aqueous media, the system is based on the chlorocomplexation of the copper cations. We demonstrated that it is possible to evaluate the complexation characteristic of the concentrated solutions used in CuRFB by investigating the speciation of copper (II) in electrolytes with increasing Cu(II) concentration. Spectroelectrochemical tests in diluted solution give information on the electrochemical behavior of electrolytes with a fare different chloro‑complexes distribution. Quantum chemical calculations elucidate the molecular structure and electronic transitions of water solvated copper chloro‑complexes, thus complementing the experimental picture.

Lacarbonara, G., Albanelli, N., Fazzi, D., Arbizzani, C. (2023). A spectroelectrochemical study of copper chloro-complexes for high performance all-copper redox flow batteries. ELECTROCHIMICA ACTA, 458, 1-9 [10.1016/j.electacta.2023.142514].

A spectroelectrochemical study of copper chloro-complexes for high performance all-copper redox flow batteries

Lacarbonara, Giampaolo
Primo
;
Fazzi, Daniele;Arbizzani, Catia
Ultimo
2023

Abstract

Redox Flow Batteries (RFB) are an ideal choice for large stationary applications. Among the different chemistries that can be exploited, all-copper aqueous RFB (CuRFB) use low-cost, earth-abundant raw materials with a well defined European supply chain. The CuRFB takes advantage of the three oxidation states of copper. As Cu(I) is not stable in aqueous media, the system is based on the chlorocomplexation of the copper cations. We demonstrated that it is possible to evaluate the complexation characteristic of the concentrated solutions used in CuRFB by investigating the speciation of copper (II) in electrolytes with increasing Cu(II) concentration. Spectroelectrochemical tests in diluted solution give information on the electrochemical behavior of electrolytes with a fare different chloro‑complexes distribution. Quantum chemical calculations elucidate the molecular structure and electronic transitions of water solvated copper chloro‑complexes, thus complementing the experimental picture.
2023
Lacarbonara, G., Albanelli, N., Fazzi, D., Arbizzani, C. (2023). A spectroelectrochemical study of copper chloro-complexes for high performance all-copper redox flow batteries. ELECTROCHIMICA ACTA, 458, 1-9 [10.1016/j.electacta.2023.142514].
Lacarbonara, Giampaolo; Albanelli, Nicolò; Fazzi, Daniele; Arbizzani, Catia
File in questo prodotto:
File Dimensione Formato  
2023_LacarbonaraOA_SI.pdf

accesso aperto

Descrizione: Materiale supplementare
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 820.36 kB
Formato Adobe PDF
820.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/925695
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact