It has been shown that many kernel methods can be equivalently formulated as minimal enclosing ball (MEB) problems in a certain feature space. Exploiting this reduction, efficient algorithms to scale up Support Vector Machines (SVMs) and other kernel methods have been introduced under the name of Core Vector Machines (CVMs). In this paper, we study a new algorithm to train SVMs based on an instance of the Frank-Wolfe optimization method recently proposed to approximate the solution of the MEB problem. We show that, specialized to SVM training, this algorithm can scale better than CVMs at the price of a slightly lower accuracy.

A New Algorithm for Training SVMs using Approximate Minimal Enclosing Balls

LODI, STEFANO;SARTORI, CLAUDIO
2010

Abstract

It has been shown that many kernel methods can be equivalently formulated as minimal enclosing ball (MEB) problems in a certain feature space. Exploiting this reduction, efficient algorithms to scale up Support Vector Machines (SVMs) and other kernel methods have been introduced under the name of Core Vector Machines (CVMs). In this paper, we study a new algorithm to train SVMs based on an instance of the Frank-Wolfe optimization method recently proposed to approximate the solution of the MEB problem. We show that, specialized to SVM training, this algorithm can scale better than CVMs at the price of a slightly lower accuracy.
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
87
95
Emanuele Frandi; Maria Grazia Gasparo; Stefano Lodi; Ricardo Ñanculef; Claudio Sartori
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/92562
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact