We compute the Hochschild–Kostant–Rosenberg decomposition of the Hochschild cohomology of Fano 3-folds. This is the first step in understanding the non-trivial Gerstenhaber algebra structure of this invariant, and yields some initial insights in the classification of Poisson structures on Fano 3-folds of higher Picard rank.

Belmans P., Fatighenti E., Tanturri F. (2023). Polyvector fields for Fano 3-folds. MATHEMATISCHE ZEITSCHRIFT, 304(1), 1-30 [10.1007/s00209-023-03261-2].

Polyvector fields for Fano 3-folds

Fatighenti E.;
2023

Abstract

We compute the Hochschild–Kostant–Rosenberg decomposition of the Hochschild cohomology of Fano 3-folds. This is the first step in understanding the non-trivial Gerstenhaber algebra structure of this invariant, and yields some initial insights in the classification of Poisson structures on Fano 3-folds of higher Picard rank.
2023
Belmans P., Fatighenti E., Tanturri F. (2023). Polyvector fields for Fano 3-folds. MATHEMATISCHE ZEITSCHRIFT, 304(1), 1-30 [10.1007/s00209-023-03261-2].
Belmans P.; Fatighenti E.; Tanturri F.
File in questo prodotto:
File Dimensione Formato  
BelmansFatighentiTanturri.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 452.36 kB
Formato Adobe PDF
452.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/925167
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact