We compute the Hochschild–Kostant–Rosenberg decomposition of the Hochschild cohomology of Fano 3-folds. This is the first step in understanding the non-trivial Gerstenhaber algebra structure of this invariant, and yields some initial insights in the classification of Poisson structures on Fano 3-folds of higher Picard rank.
Belmans P., Fatighenti E., Tanturri F. (2023). Polyvector fields for Fano 3-folds. MATHEMATISCHE ZEITSCHRIFT, 304(1), 1-30 [10.1007/s00209-023-03261-2].
Polyvector fields for Fano 3-folds
Fatighenti E.;
2023
Abstract
We compute the Hochschild–Kostant–Rosenberg decomposition of the Hochschild cohomology of Fano 3-folds. This is the first step in understanding the non-trivial Gerstenhaber algebra structure of this invariant, and yields some initial insights in the classification of Poisson structures on Fano 3-folds of higher Picard rank.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BelmansFatighentiTanturri.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
452.36 kB
Formato
Adobe PDF
|
452.36 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.