Five heterocyclic derivatives were synthesized by functionalization of a flavone nucleus with an aminophenoxy moiety. Their cytotoxicity was investigated in vitro in two models of human non-small cell lung cancer (NSCLC) cells (A549 and NCI-H1975) by using MTT assay and the results compared to those obtained in healthy fibroblasts as a non-malignant cell model. One of the aminophenoxy flavone derivatives (APF-1) was found to be effective at low micromolar concentrations in both lung cancer cell lines with a higher selective index (SI). Flow cytometric analyses showed that APF-1 induced apoptosis and cell cycle arrest in the G2/M phase through the up-regulation of p21 expression. Therefore, the aminophenoxy flavone-based compounds may be promising cancer-selective agents and could serve as a base for further research into the design of flavone-based anticancer drugs.
Mobbili G., Romaldi B., Sabbatini G., Amici A., Marcaccio M., Galeazzi R., et al. (2023). Identification of Flavone Derivative Displaying a 4′-Aminophenoxy Moiety as Potential Selective Anticancer Agent in NSCLC Tumor Cells. MOLECULES, 28(7), 1-13 [10.3390/molecules28073239].
Identification of Flavone Derivative Displaying a 4′-Aminophenoxy Moiety as Potential Selective Anticancer Agent in NSCLC Tumor Cells
Marcaccio M.;
2023
Abstract
Five heterocyclic derivatives were synthesized by functionalization of a flavone nucleus with an aminophenoxy moiety. Their cytotoxicity was investigated in vitro in two models of human non-small cell lung cancer (NSCLC) cells (A549 and NCI-H1975) by using MTT assay and the results compared to those obtained in healthy fibroblasts as a non-malignant cell model. One of the aminophenoxy flavone derivatives (APF-1) was found to be effective at low micromolar concentrations in both lung cancer cell lines with a higher selective index (SI). Flow cytometric analyses showed that APF-1 induced apoptosis and cell cycle arrest in the G2/M phase through the up-regulation of p21 expression. Therefore, the aminophenoxy flavone-based compounds may be promising cancer-selective agents and could serve as a base for further research into the design of flavone-based anticancer drugs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.