In this paper we show the following property of a non Levi flat real hypersurface in C^{n+1} : if the unit characteristic direction T is a geodesic, then it is an eigenvector of the second fundamental form and the relative eigenvalue is constant. As an application we prove a symmetry result of Alexandrov type for compact hypersurfaces in C^{n+1} with positive constant Levi mean curvature.

On the characteristic direction of real hypersurfaces in C^{n+1} and a symmetry result

MARTINO, VITTORIO;MONTANARI, ANNAMARIA
2010

Abstract

In this paper we show the following property of a non Levi flat real hypersurface in C^{n+1} : if the unit characteristic direction T is a geodesic, then it is an eigenvector of the second fundamental form and the relative eigenvalue is constant. As an application we prove a symmetry result of Alexandrov type for compact hypersurfaces in C^{n+1} with positive constant Levi mean curvature.
V. Martino; A.Montanari
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/92403
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 12
social impact