This paper investigates the surface-layer processes associated with the morning transition from nighttime downslope winds to daytime upslope winds over a semi-isolated massif. It provides an insight into the characteristics of the transition and its connection with the processes controlling the erosion of the temperature inversion at the foot of the slope. First, a criterion for the identification of days prone to the development of purely thermally driven slope winds is proposed and adopted to select five representative case studies. Then, the mechanisms leading to different patterns of erosion of the nocturnal temperature inversion at the foot of the slope are analyzed. Three main patterns of erosion are identified: the first is connected to the growth of the convective boundary layer at the surface, the second is connected to the descent of the inversion top, and the third is a combination of the previous two. The first pattern is linked to the initiation of the morning transition through surface heating, and the second pattern is connected to the top-down dilution mechanism and so to mixing with the above air. The discriminating factor in the determination of the erosion pattern is identified in the partitioning of turbulent sensible heat flux at the surface.
Farina, S., Marchio, M., Barbano, F., Di Sabatino, S., Zardi, D. (2023). Characterization of the Morning Transition over the Gentle Slope of a Semi-Isolated Massif. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 62(4), 449-466 [10.1175/JAMC-D-22-0011.1].
Characterization of the Morning Transition over the Gentle Slope of a Semi-Isolated Massif
Farina, Sofia
;Barbano, Francesco;Di Sabatino, Silvana;Zardi, Dino
2023
Abstract
This paper investigates the surface-layer processes associated with the morning transition from nighttime downslope winds to daytime upslope winds over a semi-isolated massif. It provides an insight into the characteristics of the transition and its connection with the processes controlling the erosion of the temperature inversion at the foot of the slope. First, a criterion for the identification of days prone to the development of purely thermally driven slope winds is proposed and adopted to select five representative case studies. Then, the mechanisms leading to different patterns of erosion of the nocturnal temperature inversion at the foot of the slope are analyzed. Three main patterns of erosion are identified: the first is connected to the growth of the convective boundary layer at the surface, the second is connected to the descent of the inversion top, and the third is a combination of the previous two. The first pattern is linked to the initiation of the morning transition through surface heating, and the second pattern is connected to the top-down dilution mechanism and so to mixing with the above air. The discriminating factor in the determination of the erosion pattern is identified in the partitioning of turbulent sensible heat flux at the surface.File | Dimensione | Formato | |
---|---|---|---|
Farina2023_JAMC.pdf
Open Access dal 02/10/2023
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso libero gratuito
Dimensione
2.1 MB
Formato
Adobe PDF
|
2.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.