We present a detailed study of the molecular gas content and stellar population properties of three massive galaxies at 1 < z < 1.3 that are in different stages of quenching. The galaxies were selected to have quiescent optical/near-infrared spectral energy distribution and relatively bright emission at 24 mu m, and show remarkably diverse properties. CO emission from each of the three galaxies is detected in deep NOEMA observations, allowing us to derive molecular gas fractions M-gas/M-* of 13%-23%. We also reconstruct the star formation histories by fitting models to the observed photometry and optical spectroscopy, finding evidence for recent rejuvenation in one object, slow quenching in another, and rapid quenching in the third system. To better constrain the quenching mechanism we explore the depletion times for our sample and other similar samples at z similar to 0.7 from the literature. We find that the depletion times are highly dependent on the method adopted to measure the star formation rate: using the UV+IR luminosity we obtain depletion times about 6 times shorter than those derived using dust-corrected [O ii] emission. When adopting the star formation rates from spectral fitting, which are arguably more robust, we find that recently quenched galaxies and star-forming galaxies have similar depletion times, while older quiescent systems have longer depletion times. These results offer new, important constraints for physical models of galaxy quenching.

The Diverse Molecular Gas Content of Massive Galaxies Undergoing Quenching at z ∼ 1 / Sirio Belli; Alessandra Contursi; Reinhard Genzel; Linda J. Tacconi; Natascha M. Förster-Schreiber; Dieter Lutz; Françoise Combes; Roberto Neri; Santiago García-Burillo; Karl F. Schuster; Rodrigo Herrera-Camus; Ken-ichi Tadaki; Rebecca L. Davies; Richard I. Davies; Benjamin D. Johnson; Minju M. Lee; Joel Leja; Erica J. Nelson; Sedona H. Price; Jinyi Shangguan; T. Taro Shimizu; Sandro Tacchella; Hannah Übler. - In: THE ASTROPHYSICAL JOURNAL LETTERS. - ISSN 2041-8205. - ELETTRONICO. - 909:(2021), pp. L11.1-L11.7. [10.3847/2041-8213/abe6a6]

The Diverse Molecular Gas Content of Massive Galaxies Undergoing Quenching at z ∼ 1

Sirio Belli
Primo
;
2021

Abstract

We present a detailed study of the molecular gas content and stellar population properties of three massive galaxies at 1 < z < 1.3 that are in different stages of quenching. The galaxies were selected to have quiescent optical/near-infrared spectral energy distribution and relatively bright emission at 24 mu m, and show remarkably diverse properties. CO emission from each of the three galaxies is detected in deep NOEMA observations, allowing us to derive molecular gas fractions M-gas/M-* of 13%-23%. We also reconstruct the star formation histories by fitting models to the observed photometry and optical spectroscopy, finding evidence for recent rejuvenation in one object, slow quenching in another, and rapid quenching in the third system. To better constrain the quenching mechanism we explore the depletion times for our sample and other similar samples at z similar to 0.7 from the literature. We find that the depletion times are highly dependent on the method adopted to measure the star formation rate: using the UV+IR luminosity we obtain depletion times about 6 times shorter than those derived using dust-corrected [O ii] emission. When adopting the star formation rates from spectral fitting, which are arguably more robust, we find that recently quenched galaxies and star-forming galaxies have similar depletion times, while older quiescent systems have longer depletion times. These results offer new, important constraints for physical models of galaxy quenching.
2021
The Diverse Molecular Gas Content of Massive Galaxies Undergoing Quenching at z ∼ 1 / Sirio Belli; Alessandra Contursi; Reinhard Genzel; Linda J. Tacconi; Natascha M. Förster-Schreiber; Dieter Lutz; Françoise Combes; Roberto Neri; Santiago García-Burillo; Karl F. Schuster; Rodrigo Herrera-Camus; Ken-ichi Tadaki; Rebecca L. Davies; Richard I. Davies; Benjamin D. Johnson; Minju M. Lee; Joel Leja; Erica J. Nelson; Sedona H. Price; Jinyi Shangguan; T. Taro Shimizu; Sandro Tacchella; Hannah Übler. - In: THE ASTROPHYSICAL JOURNAL LETTERS. - ISSN 2041-8205. - ELETTRONICO. - 909:(2021), pp. L11.1-L11.7. [10.3847/2041-8213/abe6a6]
Sirio Belli; Alessandra Contursi; Reinhard Genzel; Linda J. Tacconi; Natascha M. Förster-Schreiber; Dieter Lutz; Françoise Combes; Roberto Neri; Santiago García-Burillo; Karl F. Schuster; Rodrigo Herrera-Camus; Ken-ichi Tadaki; Rebecca L. Davies; Richard I. Davies; Benjamin D. Johnson; Minju M. Lee; Joel Leja; Erica J. Nelson; Sedona H. Price; Jinyi Shangguan; T. Taro Shimizu; Sandro Tacchella; Hannah Übler
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/922532
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact