We consider the first Dirichlet eigenvalue problem for a mixed local/nonlocal elliptic operator and we establish a quantitative Faber-Krahn inequality. More precisely, we show that balls minimize the first eigenvalue among sets of given volume and we provide a stability result for sets that almost attain the minimum.
A Faber-Krahn inequality for mixed local and nonlocal operators
Vecchi E.
2023
Abstract
We consider the first Dirichlet eigenvalue problem for a mixed local/nonlocal elliptic operator and we establish a quantitative Faber-Krahn inequality. More precisely, we show that balls minimize the first eigenvalue among sets of given volume and we provide a stability result for sets that almost attain the minimum.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2104.00830.pdf
embargo fino al 19/03/2024
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
672.21 kB
Formato
Adobe PDF
|
672.21 kB | Adobe PDF | Visualizza/Apri Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.