We consider the first Dirichlet eigenvalue problem for a mixed local/nonlocal elliptic operator and we establish a quantitative Faber-Krahn inequality. More precisely, we show that balls minimize the first eigenvalue among sets of given volume and we provide a stability result for sets that almost attain the minimum.
Biagi S., Dipierro S., Valdinoci E., Vecchi E. (2023). A Faber-Krahn inequality for mixed local and nonlocal operators. JOURNAL D'ANALYSE MATHEMATIQUE, 150(2), 405-448 [10.1007/s11854-023-0272-5].
A Faber-Krahn inequality for mixed local and nonlocal operators
Vecchi E.
2023
Abstract
We consider the first Dirichlet eigenvalue problem for a mixed local/nonlocal elliptic operator and we establish a quantitative Faber-Krahn inequality. More precisely, we show that balls minimize the first eigenvalue among sets of given volume and we provide a stability result for sets that almost attain the minimum.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s11854-023-0272-5 (1).pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.47 MB
Formato
Adobe PDF
|
1.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.