We consider the first Dirichlet eigenvalue problem for a mixed local/nonlocal elliptic operator and we establish a quantitative Faber-Krahn inequality. More precisely, we show that balls minimize the first eigenvalue among sets of given volume and we provide a stability result for sets that almost attain the minimum.

A Faber-Krahn inequality for mixed local and nonlocal operators

Vecchi E.
2023

Abstract

We consider the first Dirichlet eigenvalue problem for a mixed local/nonlocal elliptic operator and we establish a quantitative Faber-Krahn inequality. More precisely, we show that balls minimize the first eigenvalue among sets of given volume and we provide a stability result for sets that almost attain the minimum.
2023
Biagi S.; Dipierro S.; Valdinoci E.; Vecchi E.
File in questo prodotto:
File Dimensione Formato  
2104.00830.pdf

embargo fino al 19/03/2024

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 672.21 kB
Formato Adobe PDF
672.21 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/922093
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 5
social impact