We consider the first Dirichlet eigenvalue problem for a mixed local/nonlocal elliptic operator and we establish a quantitative Faber-Krahn inequality. More precisely, we show that balls minimize the first eigenvalue among sets of given volume and we provide a stability result for sets that almost attain the minimum.

Biagi S., Dipierro S., Valdinoci E., Vecchi E. (2023). A Faber-Krahn inequality for mixed local and nonlocal operators. JOURNAL D'ANALYSE MATHEMATIQUE, 150(2), 405-448 [10.1007/s11854-023-0272-5].

A Faber-Krahn inequality for mixed local and nonlocal operators

Vecchi E.
2023

Abstract

We consider the first Dirichlet eigenvalue problem for a mixed local/nonlocal elliptic operator and we establish a quantitative Faber-Krahn inequality. More precisely, we show that balls minimize the first eigenvalue among sets of given volume and we provide a stability result for sets that almost attain the minimum.
2023
Biagi S., Dipierro S., Valdinoci E., Vecchi E. (2023). A Faber-Krahn inequality for mixed local and nonlocal operators. JOURNAL D'ANALYSE MATHEMATIQUE, 150(2), 405-448 [10.1007/s11854-023-0272-5].
Biagi S.; Dipierro S.; Valdinoci E.; Vecchi E.
File in questo prodotto:
File Dimensione Formato  
s11854-023-0272-5 (1).pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/922093
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 19
social impact