We compute the supports of the perverse cohomology sheaves of the Hitchin fibration for GLn{\mathrm{GL}_{n}} over the locus of reduced spectral curves. In contrast to the case of meromorphic Higgs fields we find additional supports at the loci of reducible spectral curves. Their contribution to the global cohomology is governed by a finite twist of Hitchin fibrations for Levi subgroups. The corresponding summands give non-trivial contributions to the cohomology of the moduli spaces for every n≥2{n\geq{2}}. A key ingredient is a restriction result for intersection cohomology sheaves that allows us to compare the fibration to the one defined over versal deformations of spectral curves.

De Cataldo M.A.A., Heinloth J., Migliorini L. (2021). A support theorem for\break the Hitchin fibration: The case of GLnand KC. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021(780), 41-77 [10.1515/crelle-2021-0045].

A support theorem for\break the Hitchin fibration: The case of GLnand KC

Migliorini L.
2021

Abstract

We compute the supports of the perverse cohomology sheaves of the Hitchin fibration for GLn{\mathrm{GL}_{n}} over the locus of reduced spectral curves. In contrast to the case of meromorphic Higgs fields we find additional supports at the loci of reducible spectral curves. Their contribution to the global cohomology is governed by a finite twist of Hitchin fibrations for Levi subgroups. The corresponding summands give non-trivial contributions to the cohomology of the moduli spaces for every n≥2{n\geq{2}}. A key ingredient is a restriction result for intersection cohomology sheaves that allows us to compare the fibration to the one defined over versal deformations of spectral curves.
2021
De Cataldo M.A.A., Heinloth J., Migliorini L. (2021). A support theorem for\break the Hitchin fibration: The case of GLnand KC. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021(780), 41-77 [10.1515/crelle-2021-0045].
De Cataldo M.A.A.; Heinloth J.; Migliorini L.
File in questo prodotto:
File Dimensione Formato  
10.1515_crelle-2021-0045 (1).pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 586.55 kB
Formato Adobe PDF
586.55 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/921732
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact