Well-differentiated lung neuroendocrine tumours (Lu-NETs), classified as typical (TC) and atypical (AC) carcinoids, represent 30% of NETs. Angiogenesis plays an essential role in NET development and progression. A higher vascular network is a marker of differentiation, with positive prognostic implications. Materials and Methods: We retrospectively evaluated microvessel density (MVD) by CD34 immunohistochemical (IHC) staining and hypoxia by IHC staining for Hypoxia-inducible factor 1α (HIF-1α), comparing right- and left-lung parenchyma in 53 lung NETs. Results: The median age was 66 years (39–81), 56.6% males, 24.5% AC, 40.5% left-sided tumours and 69.8% TNM stage I. The mitotic count was <2/10 per 10 HPF in 79.2%, and the absence of necrosis in 81.1%, 39.6% with Ki67, was ≤2%. The MVD, the number of vessels and the average vessel area median values were significantly higher in the right than the left parenchyma (p: 0.025, p: 0.019, p: 0.016, respectively). Hypoxia resulted present in 14/19 (73.6%) left tumours and in 10/20 (50%) right tumours in the parenchyma (p: 0.129). Conclusions: This study suggests a biological rationale for a different angiogenesis and hypoxia according to the Lu-NETs’ location. In our study, left primary tumours were less vascularized and most likely to present hypoxia than right primary tumours. This finding could have potentially useful prognostic and predictive implications for Lu-NETs.
La Salvia A., Carletti R., Verrico M., Feola T., Puliani G., Bassi M., et al. (2022). Angioside: The role of Angiogenesis and Hypoxia in Lung Neuroendocrine Tumours According to Primary Tumour Location in Left or Right Parenchyma. JOURNAL OF CLINICAL MEDICINE, 11(19), 1-13 [10.3390/jcm11195958].
Angioside: The role of Angiogenesis and Hypoxia in Lung Neuroendocrine Tumours According to Primary Tumour Location in Left or Right Parenchyma
Lamberti G.;
2022
Abstract
Well-differentiated lung neuroendocrine tumours (Lu-NETs), classified as typical (TC) and atypical (AC) carcinoids, represent 30% of NETs. Angiogenesis plays an essential role in NET development and progression. A higher vascular network is a marker of differentiation, with positive prognostic implications. Materials and Methods: We retrospectively evaluated microvessel density (MVD) by CD34 immunohistochemical (IHC) staining and hypoxia by IHC staining for Hypoxia-inducible factor 1α (HIF-1α), comparing right- and left-lung parenchyma in 53 lung NETs. Results: The median age was 66 years (39–81), 56.6% males, 24.5% AC, 40.5% left-sided tumours and 69.8% TNM stage I. The mitotic count was <2/10 per 10 HPF in 79.2%, and the absence of necrosis in 81.1%, 39.6% with Ki67, was ≤2%. The MVD, the number of vessels and the average vessel area median values were significantly higher in the right than the left parenchyma (p: 0.025, p: 0.019, p: 0.016, respectively). Hypoxia resulted present in 14/19 (73.6%) left tumours and in 10/20 (50%) right tumours in the parenchyma (p: 0.129). Conclusions: This study suggests a biological rationale for a different angiogenesis and hypoxia according to the Lu-NETs’ location. In our study, left primary tumours were less vascularized and most likely to present hypoxia than right primary tumours. This finding could have potentially useful prognostic and predictive implications for Lu-NETs.File | Dimensione | Formato | |
---|---|---|---|
jcm-11-05958-v2.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.