Background: Allele-specific KRAS inhibitors are an emerging class of cancer therapies. KRAS-mutant (KRASMUT) non-small-cell lung cancers (NSCLCs) exhibit heterogeneous outcomes, driven by differences in underlying biology shaped by co-mutations. In contrast to KRASG12C NSCLC, KRASG12D NSCLC is associated with low/never-smoking status and is largely uncharacterized. Patients and methods: Clinicopathologic and genomic information were collected from patients with NSCLCs harboring a KRAS mutation at the Dana-Farber Cancer Institute (DFCI), Memorial Sloan Kettering Cancer Center, MD Anderson Cancer Center, and Imperial College of London. Multiplexed immunofluorescence for CK7, programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), Foxp3, and CD8 was carried out on a subset of samples with available tissue at the DFCI. Clinical outcomes to PD-(L)1 inhibition ± chemotherapy were analyzed according to KRAS mutation subtype. Results: Of 2327 patients with KRAS-mutated (KRASMUT) NSCLC, 15% (n = 354) harbored KRASG12D. Compared to KRASnon-G12D NSCLC, KRASG12D NSCLC had a lower pack-year (py) smoking history (median 22.5 py versus 30.0 py, P < 0.0001) and was enriched in never smokers (22% versus 5%, P < 0.0001). KRASG12D had lower PD-L1 tumor proportion score (TPS) (median 1% versus 5%, P < 0.01) and lower tumor mutation burden (TMB) compared to KRASnon-G12D (median 8.4 versus 9.9 mt/Mb, P < 0.0001). Of the samples which underwent multiplexed immunofluorescence, KRASG12D had lower intratumoral and total CD8+PD1+ T cells (P < 0.05). Among 850 patients with advanced KRASMUT NSCLC who received PD-(L)1-based therapies, KRASG12D was associated with a worse objective response rate (ORR) (15.8% versus 28.4%, P = 0.03), progression-free survival (PFS) [hazard ratio (HR) 1.51, 95% confidence interval (CI) 1.45-2.00, P = 0.003], and overall survival (OS; HR 1.45, 1.05-1.99, P = 0.02) to PD-(L)1 inhibition alone but not to chemo-immunotherapy combinations [ORR 30.6% versus 35.7%, P = 0.51; PFS HR 1.28 (95%CI 0.92-1.77), P = 0.13; OS HR 1.36 (95%CI 0.95-1.96), P = 0.09] compared to KRASnon-G12D. Conclusions: KRASG12D lung cancers harbor distinct clinical, genomic, and immunologic features compared to other KRAS-mutated lung cancers and worse outcomes to PD-(L)1 blockade. Drug development for KRASG12D lung cancers will have to take these differences into account.
Ricciuti B., Alessi J.V., Elkrief A., Wang X., Cortellini A., Li Y.Y., et al. (2022). Dissecting the clinicopathologic, genomic, and immunophenotypic correlates of KRASG12D-mutated non-small-cell lung cancer. ANNALS OF ONCOLOGY, 33(10), 1029-1040 [10.1016/j.annonc.2022.07.005].
Dissecting the clinicopathologic, genomic, and immunophenotypic correlates of KRASG12D-mutated non-small-cell lung cancer
Ricciuti B.;Pecci F.;Lamberti G.Writing – Review & Editing
;
2022
Abstract
Background: Allele-specific KRAS inhibitors are an emerging class of cancer therapies. KRAS-mutant (KRASMUT) non-small-cell lung cancers (NSCLCs) exhibit heterogeneous outcomes, driven by differences in underlying biology shaped by co-mutations. In contrast to KRASG12C NSCLC, KRASG12D NSCLC is associated with low/never-smoking status and is largely uncharacterized. Patients and methods: Clinicopathologic and genomic information were collected from patients with NSCLCs harboring a KRAS mutation at the Dana-Farber Cancer Institute (DFCI), Memorial Sloan Kettering Cancer Center, MD Anderson Cancer Center, and Imperial College of London. Multiplexed immunofluorescence for CK7, programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), Foxp3, and CD8 was carried out on a subset of samples with available tissue at the DFCI. Clinical outcomes to PD-(L)1 inhibition ± chemotherapy were analyzed according to KRAS mutation subtype. Results: Of 2327 patients with KRAS-mutated (KRASMUT) NSCLC, 15% (n = 354) harbored KRASG12D. Compared to KRASnon-G12D NSCLC, KRASG12D NSCLC had a lower pack-year (py) smoking history (median 22.5 py versus 30.0 py, P < 0.0001) and was enriched in never smokers (22% versus 5%, P < 0.0001). KRASG12D had lower PD-L1 tumor proportion score (TPS) (median 1% versus 5%, P < 0.01) and lower tumor mutation burden (TMB) compared to KRASnon-G12D (median 8.4 versus 9.9 mt/Mb, P < 0.0001). Of the samples which underwent multiplexed immunofluorescence, KRASG12D had lower intratumoral and total CD8+PD1+ T cells (P < 0.05). Among 850 patients with advanced KRASMUT NSCLC who received PD-(L)1-based therapies, KRASG12D was associated with a worse objective response rate (ORR) (15.8% versus 28.4%, P = 0.03), progression-free survival (PFS) [hazard ratio (HR) 1.51, 95% confidence interval (CI) 1.45-2.00, P = 0.003], and overall survival (OS; HR 1.45, 1.05-1.99, P = 0.02) to PD-(L)1 inhibition alone but not to chemo-immunotherapy combinations [ORR 30.6% versus 35.7%, P = 0.51; PFS HR 1.28 (95%CI 0.92-1.77), P = 0.13; OS HR 1.36 (95%CI 0.95-1.96), P = 0.09] compared to KRASnon-G12D. Conclusions: KRASG12D lung cancers harbor distinct clinical, genomic, and immunologic features compared to other KRAS-mutated lung cancers and worse outcomes to PD-(L)1 blockade. Drug development for KRASG12D lung cancers will have to take these differences into account.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.