We classify the possible closures of leaves of the isoperiodic foliation defined on the Hodge bundle over the moduli space of genus g >= 2 curves and prove that the foliation is ergodic on those sets. The results derive from the connectedness properties of the fibers of the period map defined on the Torelli cover of the moduli space. Some consequences on the topology of Hurwitz spaces of primitive branched coverings over elliptic curves are also obtained. To prove the results we develop the theory of augmented Torelli space, the branched Torelli cover of the Deligne-Mumford compactification of the moduli space of curves.

Calsamiglia G., Deroin B., Francaviglia S. (2023). A transfer principle: from periods to isoperiodic foliations. GEOMETRIC AND FUNCTIONAL ANALYSIS, 33(1), 57-169 [10.1007/s00039-023-00627-w].

A transfer principle: from periods to isoperiodic foliations

Francaviglia S.
2023

Abstract

We classify the possible closures of leaves of the isoperiodic foliation defined on the Hodge bundle over the moduli space of genus g >= 2 curves and prove that the foliation is ergodic on those sets. The results derive from the connectedness properties of the fibers of the period map defined on the Torelli cover of the moduli space. Some consequences on the topology of Hurwitz spaces of primitive branched coverings over elliptic curves are also obtained. To prove the results we develop the theory of augmented Torelli space, the branched Torelli cover of the Deligne-Mumford compactification of the moduli space of curves.
2023
Calsamiglia G., Deroin B., Francaviglia S. (2023). A transfer principle: from periods to isoperiodic foliations. GEOMETRIC AND FUNCTIONAL ANALYSIS, 33(1), 57-169 [10.1007/s00039-023-00627-w].
Calsamiglia G.; Deroin B.; Francaviglia S.
File in questo prodotto:
File Dimensione Formato  
A+transfer+principle_GAFA_FINAL_VERSION_7_dec_22.pdf

Open Access dal 04/02/2024

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/920355
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact