: The Sda carbohydrate epitope and its biosynthetic B4GALNT2 enzyme are expressed in the healthy colon and down-regulated to variable extents in colon cancer. The human B4GALNT2 gene drives the expression of a long and a short protein isoform (LF-B4GALNT2 and SF-B4GALNT2) sharing identical transmembrane and luminal domains. Both isoforms are trans-Golgi proteins and the LF-B4GALNT2 also localizes to post-Golgi vesicles thanks to its extended cytoplasmic tail. Control mechanisms underpinning Sda and B4GALNT2 expression in the gastrointestinal tract are complex and not fully understood. This study reveals the existence of two unusual N-glycosylation sites in B4GALNT2 luminal domain. The first atypical N-X-C site is evolutionarily conserved and occupied by a complex-type N-glycan. We explored the influence of this N-glycan using site-directed mutagenesis and showed that each mutant had a slightly decreased expression level, impaired stability, and reduced enzyme activity. Furthermore, we observed that the mutant SF-B4GALNT2 was partially mislocalized in the endoplasmic reticulum, whereas the mutant LF-B4GALNT2 was still localized in the Golgi and post-Golgi vesicles. Lastly, we showed that the formation of homodimers was drastically impaired in the two mutated isoforms. An AlphaFold2 model of the LF-B4GALNT2 dimer with an N-glycan on each monomer corroborated these findings and suggested that N-glycosylation of each B4GALNT2 isoform controlled their biological activity.

N-Glycan on the Non-Consensus N-X-C Glycosylation Site Impacts Activity, Stability, and Localization of the Sda Synthase B4GALNT2 / Cogez, Virginie; Vicogne, Dorothée; Schulz, Céline; Portier, Lucie; Venturi, Giulia; de Ruyck, Jérôme; Decloquement, Mathieu; Lensink, Marc F; Brysbaert, Guillaume; Dall'Olio, Fabio; Groux-Degroote, Sophie; Harduin-Lepers, Anne. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - ELETTRONICO. - 24:4(2023), pp. 4139.1-4139.21. [10.3390/ijms24044139]

N-Glycan on the Non-Consensus N-X-C Glycosylation Site Impacts Activity, Stability, and Localization of the Sda Synthase B4GALNT2

Venturi, Giulia;Dall'Olio, Fabio;
2023

Abstract

: The Sda carbohydrate epitope and its biosynthetic B4GALNT2 enzyme are expressed in the healthy colon and down-regulated to variable extents in colon cancer. The human B4GALNT2 gene drives the expression of a long and a short protein isoform (LF-B4GALNT2 and SF-B4GALNT2) sharing identical transmembrane and luminal domains. Both isoforms are trans-Golgi proteins and the LF-B4GALNT2 also localizes to post-Golgi vesicles thanks to its extended cytoplasmic tail. Control mechanisms underpinning Sda and B4GALNT2 expression in the gastrointestinal tract are complex and not fully understood. This study reveals the existence of two unusual N-glycosylation sites in B4GALNT2 luminal domain. The first atypical N-X-C site is evolutionarily conserved and occupied by a complex-type N-glycan. We explored the influence of this N-glycan using site-directed mutagenesis and showed that each mutant had a slightly decreased expression level, impaired stability, and reduced enzyme activity. Furthermore, we observed that the mutant SF-B4GALNT2 was partially mislocalized in the endoplasmic reticulum, whereas the mutant LF-B4GALNT2 was still localized in the Golgi and post-Golgi vesicles. Lastly, we showed that the formation of homodimers was drastically impaired in the two mutated isoforms. An AlphaFold2 model of the LF-B4GALNT2 dimer with an N-glycan on each monomer corroborated these findings and suggested that N-glycosylation of each B4GALNT2 isoform controlled their biological activity.
2023
N-Glycan on the Non-Consensus N-X-C Glycosylation Site Impacts Activity, Stability, and Localization of the Sda Synthase B4GALNT2 / Cogez, Virginie; Vicogne, Dorothée; Schulz, Céline; Portier, Lucie; Venturi, Giulia; de Ruyck, Jérôme; Decloquement, Mathieu; Lensink, Marc F; Brysbaert, Guillaume; Dall'Olio, Fabio; Groux-Degroote, Sophie; Harduin-Lepers, Anne. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - ELETTRONICO. - 24:4(2023), pp. 4139.1-4139.21. [10.3390/ijms24044139]
Cogez, Virginie; Vicogne, Dorothée; Schulz, Céline; Portier, Lucie; Venturi, Giulia; de Ruyck, Jérôme; Decloquement, Mathieu; Lensink, Marc F; Brysbaert, Guillaume; Dall'Olio, Fabio; Groux-Degroote, Sophie; Harduin-Lepers, Anne
File in questo prodotto:
File Dimensione Formato  
IJMS anne 2023.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 5.16 MB
Formato Adobe PDF
5.16 MB Adobe PDF Visualizza/Apri
ijms-24-04139-s001.zip

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 581.2 kB
Formato Zip File
581.2 kB Zip File Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/920004
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact