We derive the forward and backward filtering equations for a class of degenerate partially observable diffusions, satisfying the weak Hörmander condition. Our approach is based on the Hölder theory for degenerate SPDEs that allows to pursue the direct approaches proposed by Krylov and Zatezalo, and Veretennikov, avoiding the use of general results from filtering theory. As a by-product we also provide existence, regularity and estimates for the filtering density.

Pascucci A., Pesce A. (2023). Backward and forward filtering under the weak Hörmander condition. STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS: ANALYSIS AND COMPUTATIONS, 11(1), 177-210 [10.1007/s40072-021-00225-7].

Backward and forward filtering under the weak Hörmander condition

Pascucci A.
;
Pesce A.
2023

Abstract

We derive the forward and backward filtering equations for a class of degenerate partially observable diffusions, satisfying the weak Hörmander condition. Our approach is based on the Hölder theory for degenerate SPDEs that allows to pursue the direct approaches proposed by Krylov and Zatezalo, and Veretennikov, avoiding the use of general results from filtering theory. As a by-product we also provide existence, regularity and estimates for the filtering density.
2023
Pascucci A., Pesce A. (2023). Backward and forward filtering under the weak Hörmander condition. STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS: ANALYSIS AND COMPUTATIONS, 11(1), 177-210 [10.1007/s40072-021-00225-7].
Pascucci A.; Pesce A.
File in questo prodotto:
File Dimensione Formato  
2006.13325.pdf

Open Access dal 06/01/2024

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 434.8 kB
Formato Adobe PDF
434.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/919852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact