We consider the space Rg,Sjavax.xml.bind.JAXBElement@1e9d2248Sjavax.xml.bind.JAXBElement@3344bf5e of curves with a connected S3-cover, proving that for any odd genus g≥13 this moduli is of general type. Furthermore we develop a set of tools that are essential in approaching the case of G-covers for any finite group G.

Galeotti M. (2021). Birational geometry of moduli of curves with an S3-cover. ADVANCES IN MATHEMATICS, 389, 1-39 [10.1016/j.aim.2021.107898].

Birational geometry of moduli of curves with an S3-cover

Galeotti M.
2021

Abstract

We consider the space Rg,Sjavax.xml.bind.JAXBElement@1e9d2248Sjavax.xml.bind.JAXBElement@3344bf5e of curves with a connected S3-cover, proving that for any odd genus g≥13 this moduli is of general type. Furthermore we develop a set of tools that are essential in approaching the case of G-covers for any finite group G.
2021
Galeotti M. (2021). Birational geometry of moduli of curves with an S3-cover. ADVANCES IN MATHEMATICS, 389, 1-39 [10.1016/j.aim.2021.107898].
Galeotti M.
File in questo prodotto:
File Dimensione Formato  
1905.03487v2.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 490.36 kB
Formato Adobe PDF
490.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/919826
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact