We analyze the singular locus and the locus of non-canonical singularities of the moduli space barR_{G,g} of curves with a G-cover for any finite group G. We show that non-canonical singularities are of two types: T-curves, that is singularities lifted from the moduli space barM_g of stable curves, and J-curves, that is new singularities entirely characterized by the dual graph of the cover. Finally, we prove that in the case G=S3, the J-locus is empty, which is the first fundamental step in evaluating the Kodaira dimension of R_{S3,g}.

Galeotti, M. (2022). MODULI OF G-COVERS OF CURVES: GEOMETRY AND SINGULARITIES. ANNALES DE L'INSTITUT FOURIER, 72(6), 2191-2240 [10.5802/aif.3503].

MODULI OF G-COVERS OF CURVES: GEOMETRY AND SINGULARITIES

Galeotti M.
2022

Abstract

We analyze the singular locus and the locus of non-canonical singularities of the moduli space barR_{G,g} of curves with a G-cover for any finite group G. We show that non-canonical singularities are of two types: T-curves, that is singularities lifted from the moduli space barM_g of stable curves, and J-curves, that is new singularities entirely characterized by the dual graph of the cover. Finally, we prove that in the case G=S3, the J-locus is empty, which is the first fundamental step in evaluating the Kodaira dimension of R_{S3,g}.
2022
Galeotti, M. (2022). MODULI OF G-COVERS OF CURVES: GEOMETRY AND SINGULARITIES. ANNALES DE L'INSTITUT FOURIER, 72(6), 2191-2240 [10.5802/aif.3503].
Galeotti; M.
File in questo prodotto:
File Dimensione Formato  
AIF_2022__72_6_2191_0.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non opere derivate (CCBYND)
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/919825
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact