Hydrophilic semicrystalline carriers represent an alternative to amorphous polymers due to their low melting temperature, useful for the production of solid dispersions (SDs) by melting-based technologies. This research aims to compare SDs of ketoprofen (KET) and three different semicrystalline carriers (PEG, Poloxamer and Gelucire) regarding miscibility, phase behavior, molecular interactions and stability. KET was chosen owing to its low solubility and high glass forming ability. Estimation of drug-excipient miscibility was performed by Flory-Huggins theory. Negative Gibbs free energy indicated a spontaneous mixing of KET with the three carriers and miscibility in the order PEG > Poloxamer > Gelucire. SDs up to 40 % w/w of drug were produced by melting process at a temperature below KET melting point. Characterization of SDs was performed by differential scanning calorimetry, polarized light microscopy and powder X-ray diffraction. In case of PEG and Poloxamer, the drug incorporation did not affect carrier crystallinity, while KET was in the amorphous state. Differently, KET retarded the crystallization of Gelucire and at high drug loadings the SDs were amorphous and semisolid. FT-IR analysis revealed a strong interaction between KET and the three carriers. Finally, PEG-based SDs above 20 % KET loading displayed drug crystallization after 6 months of storage; while Poloxamer and Gelucire-based SDs showed KET crystallization only at 40 % KET. Due to its less hydrophilic character and limited water uptake, Gelucire showed the best stability among the three excipients.

Bertoni S., Albertini B., Passerini N. (2023). Investigating the physicochemical properties of solid dispersions based on semicrystalline carriers: A case study with ketoprofen. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 632, 1-13 [10.1016/j.ijpharm.2022.122576].

Investigating the physicochemical properties of solid dispersions based on semicrystalline carriers: A case study with ketoprofen

Bertoni S.
Primo
;
Albertini B.
Secondo
;
Passerini N.
Ultimo
2023

Abstract

Hydrophilic semicrystalline carriers represent an alternative to amorphous polymers due to their low melting temperature, useful for the production of solid dispersions (SDs) by melting-based technologies. This research aims to compare SDs of ketoprofen (KET) and three different semicrystalline carriers (PEG, Poloxamer and Gelucire) regarding miscibility, phase behavior, molecular interactions and stability. KET was chosen owing to its low solubility and high glass forming ability. Estimation of drug-excipient miscibility was performed by Flory-Huggins theory. Negative Gibbs free energy indicated a spontaneous mixing of KET with the three carriers and miscibility in the order PEG > Poloxamer > Gelucire. SDs up to 40 % w/w of drug were produced by melting process at a temperature below KET melting point. Characterization of SDs was performed by differential scanning calorimetry, polarized light microscopy and powder X-ray diffraction. In case of PEG and Poloxamer, the drug incorporation did not affect carrier crystallinity, while KET was in the amorphous state. Differently, KET retarded the crystallization of Gelucire and at high drug loadings the SDs were amorphous and semisolid. FT-IR analysis revealed a strong interaction between KET and the three carriers. Finally, PEG-based SDs above 20 % KET loading displayed drug crystallization after 6 months of storage; while Poloxamer and Gelucire-based SDs showed KET crystallization only at 40 % KET. Due to its less hydrophilic character and limited water uptake, Gelucire showed the best stability among the three excipients.
2023
Bertoni S., Albertini B., Passerini N. (2023). Investigating the physicochemical properties of solid dispersions based on semicrystalline carriers: A case study with ketoprofen. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 632, 1-13 [10.1016/j.ijpharm.2022.122576].
Bertoni S.; Albertini B.; Passerini N.
File in questo prodotto:
File Dimensione Formato  
KETO paper pdf_compressed.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 873.28 kB
Formato Adobe PDF
873.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/919808
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact