We establish heat kernel and gradient estimates for the density of kinetic degenerate Kolmogorov stochastic differential equations. Our results are established under somehow minimal assumptions that guarantee the SDE is weakly well posed.
Chaudru de Raynal, P.E., Menozzi, S., Pesce, A., Zhang, X. (2023). Heat kernel and gradient estimates for kinetic SDEs with low regularity coefficients. BULLETIN DES SCIENCES MATHEMATIQUES, 183, 1-56 [10.1016/j.bulsci.2023.103229].
Heat kernel and gradient estimates for kinetic SDEs with low regularity coefficients
S. Menozzi;A. Pesce;
2023
Abstract
We establish heat kernel and gradient estimates for the density of kinetic degenerate Kolmogorov stochastic differential equations. Our results are established under somehow minimal assumptions that guarantee the SDE is weakly well posed.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
HK-Kinetic.pdf
Open Access dal 23/01/2025
Tipo:
Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
641.43 kB
Formato
Adobe PDF
|
641.43 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.