We establish heat kernel and gradient estimates for the density of kinetic degenerate Kolmogorov stochastic differential equations. Our results are established under somehow minimal assumptions that guarantee the SDE is weakly well posed.

P.E. Chaudru de Raynal, S.M. (2023). Heat kernel and gradient estimates for kinetic SDEs with low regularity coefficients. BULLETIN DES SCIENCES MATHEMATIQUES, 183, 1-56 [10.1016/j.bulsci.2023.103229].

Heat kernel and gradient estimates for kinetic SDEs with low regularity coefficients

S. Menozzi;A. Pesce;
2023

Abstract

We establish heat kernel and gradient estimates for the density of kinetic degenerate Kolmogorov stochastic differential equations. Our results are established under somehow minimal assumptions that guarantee the SDE is weakly well posed.
2023
P.E. Chaudru de Raynal, S.M. (2023). Heat kernel and gradient estimates for kinetic SDEs with low regularity coefficients. BULLETIN DES SCIENCES MATHEMATIQUES, 183, 1-56 [10.1016/j.bulsci.2023.103229].
P.E. Chaudru de Raynal , S. Menozzi, A. Pesce, X. Zhang
File in questo prodotto:
File Dimensione Formato  
HK-Kinetic.pdf

embargo fino al 22/01/2025

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 641.43 kB
Formato Adobe PDF
641.43 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/919804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact