We establish heat kernel and gradient estimates for the density of kinetic degenerate Kolmogorov stochastic differential equations. Our results are established under somehow minimal assumptions that guarantee the SDE is weakly well posed.

Chaudru de Raynal, P.E., Menozzi, S., Pesce, A., Zhang, X. (2023). Heat kernel and gradient estimates for kinetic SDEs with low regularity coefficients. BULLETIN DES SCIENCES MATHEMATIQUES, 183, 1-56 [10.1016/j.bulsci.2023.103229].

Heat kernel and gradient estimates for kinetic SDEs with low regularity coefficients

S. Menozzi;A. Pesce;
2023

Abstract

We establish heat kernel and gradient estimates for the density of kinetic degenerate Kolmogorov stochastic differential equations. Our results are established under somehow minimal assumptions that guarantee the SDE is weakly well posed.
2023
Chaudru de Raynal, P.E., Menozzi, S., Pesce, A., Zhang, X. (2023). Heat kernel and gradient estimates for kinetic SDEs with low regularity coefficients. BULLETIN DES SCIENCES MATHEMATIQUES, 183, 1-56 [10.1016/j.bulsci.2023.103229].
Chaudru de Raynal, P. E.; Menozzi, S.; Pesce, A.; Zhang, X.
File in questo prodotto:
File Dimensione Formato  
HK-Kinetic.pdf

Open Access dal 23/01/2025

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 641.43 kB
Formato Adobe PDF
641.43 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/919804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact