Multiwavelets have been revealed to be a successful generalization within the context of wavelet theory. Recently Lebrun and Vetterli have introduced the concept of "balanced" multiwavelets, which present properties that are usually absent in the case of classical multiwavelets and do not need the prefiltering step. In this work we present an algebraic construction of biorthogonal multiwavelets by means of the well-known "lifting scheme". The flexibility of this tool allows us to exploit the degrees of freedom left after satisfying the perfect reconstruction condition in order to obtain finite k-balanced multifilters with custom-designed properties which give rise to new balanced multiwavelet bases. All the problems we deal with are stated in the framework of banded block recursive matrices, since simplified algebraic conditions can be derived from this recursive approach.
Bacchelli Silvia, C.M. (2000). An algebraic construction of k-balanced multiwavelets via the lifting scheme. NUMERICAL ALGORITHMS, 23(4), 329-356 [10.1023/A:1019120621646].
An algebraic construction of k-balanced multiwavelets via the lifting scheme
Lazzaro Damiana
2000
Abstract
Multiwavelets have been revealed to be a successful generalization within the context of wavelet theory. Recently Lebrun and Vetterli have introduced the concept of "balanced" multiwavelets, which present properties that are usually absent in the case of classical multiwavelets and do not need the prefiltering step. In this work we present an algebraic construction of biorthogonal multiwavelets by means of the well-known "lifting scheme". The flexibility of this tool allows us to exploit the degrees of freedom left after satisfying the perfect reconstruction condition in order to obtain finite k-balanced multifilters with custom-designed properties which give rise to new balanced multiwavelet bases. All the problems we deal with are stated in the framework of banded block recursive matrices, since simplified algebraic conditions can be derived from this recursive approach.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.