Background: The adoption of Virtual Surgical Planning (VSP) and 3D technologies is rapidly growing within the field of orthopedic surgery, opening the door to highly innovative and individually tailored surgical techniques. We present an innovative correction approach successfully used in a child affected by “windswept deformity” of the knees. Methods: We report a case involving a child diagnosed with “windswept deformity” of the knees. This condition was successfully addressed through a one-stage bilateral osteotomy of the distal femur. Notably, the wedge removed from the valgus side was flipped and employed on the varus side to achieve the correction of both knees simultaneously. The surgical technique was entirely conceptualized, simulated, and planned in a virtual environment. Customized cutting guides and bony models were produced at an in-hospital 3D printing point of care and used during the operation. Results: The surgery was carried out according to the VSP, resulting in favorable outcomes. We achieved good corrections of the angular deformity with an absolute difference from the planned correction of 2° on the right side and 1° on the left side. Moreover, this precision not only improved surgical outcomes but also reduced the procedure’s duration and overall cost, highlighting the efficiency of our approach. Conclusions: The integration of VSP and 3D printing into the surgical treatment of rare limb anomalies not only deepens our understanding of these deformities but also opens the door to the development of innovative, personalized, and adaptable approaches for addressing these unique conditions.

Grazia Chiara Menozzi, A.D. (2023). Side-to-Side Flipping Wedge Osteotomy: Virtual Surgical Planning Suggested an Innovative One-Stage Procedure for Aligning Both Knees in “Windswept Deformity”. JOURNAL OF PERSONALIZED MEDICINE, 13(11), 1-15 [10.3390/jpm13111538].

Side-to-Side Flipping Wedge Osteotomy: Virtual Surgical Planning Suggested an Innovative One-Stage Procedure for Aligning Both Knees in “Windswept Deformity”

Grazia Chiara Menozzi;Marco Ramella;Giulia Alessandri;Leonardo Frizziero;Alfredo Liverani;
2023

Abstract

Background: The adoption of Virtual Surgical Planning (VSP) and 3D technologies is rapidly growing within the field of orthopedic surgery, opening the door to highly innovative and individually tailored surgical techniques. We present an innovative correction approach successfully used in a child affected by “windswept deformity” of the knees. Methods: We report a case involving a child diagnosed with “windswept deformity” of the knees. This condition was successfully addressed through a one-stage bilateral osteotomy of the distal femur. Notably, the wedge removed from the valgus side was flipped and employed on the varus side to achieve the correction of both knees simultaneously. The surgical technique was entirely conceptualized, simulated, and planned in a virtual environment. Customized cutting guides and bony models were produced at an in-hospital 3D printing point of care and used during the operation. Results: The surgery was carried out according to the VSP, resulting in favorable outcomes. We achieved good corrections of the angular deformity with an absolute difference from the planned correction of 2° on the right side and 1° on the left side. Moreover, this precision not only improved surgical outcomes but also reduced the procedure’s duration and overall cost, highlighting the efficiency of our approach. Conclusions: The integration of VSP and 3D printing into the surgical treatment of rare limb anomalies not only deepens our understanding of these deformities but also opens the door to the development of innovative, personalized, and adaptable approaches for addressing these unique conditions.
2023
Grazia Chiara Menozzi, A.D. (2023). Side-to-Side Flipping Wedge Osteotomy: Virtual Surgical Planning Suggested an Innovative One-Stage Procedure for Aligning Both Knees in “Windswept Deformity”. JOURNAL OF PERSONALIZED MEDICINE, 13(11), 1-15 [10.3390/jpm13111538].
Grazia Chiara Menozzi, Alessandro Depaoli, Marco Ramella, Giulia Alessandri, Leonardo Frizziero, Alfredo Liverani, Gino Rocca, Giovanni Trisolino...espandi
File in questo prodotto:
File Dimensione Formato  
jpm-13-01538.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 10.37 MB
Formato Adobe PDF
10.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/919442
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact