A minimum variational approach is developed for Maxwell's equations. The existence and uniqueness of strong solutions is shown to be equivalent to the existence of a point of strict minimum for an appropriate functional, using some thermodynamical restrictions on the constitutive equations. One of Maxwell's equations is treated as a constraint in defining the domain of such a functional. Suitable functionals are constructed for several cases.

Bosello C.A., Nibbi R. (1999). A principle of constrained minimum in electromagnetism. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 37(2), 253-268 [10.1016/s0020-7225(98)00060-3].

A principle of constrained minimum in electromagnetism

Bosello C. A.;Nibbi R.
1999

Abstract

A minimum variational approach is developed for Maxwell's equations. The existence and uniqueness of strong solutions is shown to be equivalent to the existence of a point of strict minimum for an appropriate functional, using some thermodynamical restrictions on the constitutive equations. One of Maxwell's equations is treated as a constraint in defining the domain of such a functional. Suitable functionals are constructed for several cases.
1999
Bosello C.A., Nibbi R. (1999). A principle of constrained minimum in electromagnetism. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 37(2), 253-268 [10.1016/s0020-7225(98)00060-3].
Bosello C.A.; Nibbi R.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/919112
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact