In this paper, we consider a non-local electromagnetic medium for which the quadrupole term in the electric induction is not negligible. After giving an outline of the physical model, the problem of Maxwell equations for such a medium is addressed by proving existence and uniqueness of solutions and a principle of constrained minimum is shown to hold as a consequence of some thermodynamical restrictions.

Bosello C.A., Nibbi R. (2003). A well-posed problem for electromagnetic media with quadrupoles. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 26(5), 375-388 [10.1002/mma.357].

A well-posed problem for electromagnetic media with quadrupoles

Bosello C. A.;Nibbi R.
2003

Abstract

In this paper, we consider a non-local electromagnetic medium for which the quadrupole term in the electric induction is not negligible. After giving an outline of the physical model, the problem of Maxwell equations for such a medium is addressed by proving existence and uniqueness of solutions and a principle of constrained minimum is shown to hold as a consequence of some thermodynamical restrictions.
2003
Bosello C.A., Nibbi R. (2003). A well-posed problem for electromagnetic media with quadrupoles. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 26(5), 375-388 [10.1002/mma.357].
Bosello C.A.; Nibbi R.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/919109
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact