: Extracellular vesicles (EVs) are phospholipidic bi-layer enclosed nanoparticles secreted naturally by all cell types. They are attracting increasing attention in the fields of nanomedicine, nutraceutics and cosmetics as biocompatible carriers for drug delivery, with intrinsic properties beneficial to human health. Scientific work now focuses on developing techniques for isolating EVs that can translate into industrial-scale production and meet rigorous clinical requirements. The science of EVs is ongoing, and many pitfalls must be addressed, such as the requirement for standard, reproducible, inexpensive, and Good Manufacturing Practices (GMP) adherent EV processing techniques. Researchers are exploring the use of alternative sources to EVs derived from mammalian cultures, such as plant EVs, as well as the use of bacteria, algae and milk. Regarding the downstream processing of EVs, many alternative techniques to the ultracentrifugation (UC) protocols most commonly used in the laboratory are emerging. In the context of process scale-up, membrane-based processes for isolation and purification of EVs are the most promising, either as stand-alone processes or in combination with chromatographic techniques. This review discusses current trends on EVs source selection and EVs downstream processing techniques, with a focus on plant-derived EVs and membrane-based techniques for EVs enrichment.

Alternative biological sources for extracellular vesicles production and purification strategies for process scale-up / Giancaterino S.; Boi C.. - In: BIOTECHNOLOGY ADVANCES. - ISSN 0734-9750. - STAMPA. - 63:(2023), pp. 108092-108107. [10.1016/j.biotechadv.2022.108092]

Alternative biological sources for extracellular vesicles production and purification strategies for process scale-up

Giancaterino S.
Primo
;
Boi C.
Ultimo
2023

Abstract

: Extracellular vesicles (EVs) are phospholipidic bi-layer enclosed nanoparticles secreted naturally by all cell types. They are attracting increasing attention in the fields of nanomedicine, nutraceutics and cosmetics as biocompatible carriers for drug delivery, with intrinsic properties beneficial to human health. Scientific work now focuses on developing techniques for isolating EVs that can translate into industrial-scale production and meet rigorous clinical requirements. The science of EVs is ongoing, and many pitfalls must be addressed, such as the requirement for standard, reproducible, inexpensive, and Good Manufacturing Practices (GMP) adherent EV processing techniques. Researchers are exploring the use of alternative sources to EVs derived from mammalian cultures, such as plant EVs, as well as the use of bacteria, algae and milk. Regarding the downstream processing of EVs, many alternative techniques to the ultracentrifugation (UC) protocols most commonly used in the laboratory are emerging. In the context of process scale-up, membrane-based processes for isolation and purification of EVs are the most promising, either as stand-alone processes or in combination with chromatographic techniques. This review discusses current trends on EVs source selection and EVs downstream processing techniques, with a focus on plant-derived EVs and membrane-based techniques for EVs enrichment.
2023
Alternative biological sources for extracellular vesicles production and purification strategies for process scale-up / Giancaterino S.; Boi C.. - In: BIOTECHNOLOGY ADVANCES. - ISSN 0734-9750. - STAMPA. - 63:(2023), pp. 108092-108107. [10.1016/j.biotechadv.2022.108092]
Giancaterino S.; Boi C.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/919037
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact