The most successful alternative to traditional surgery for ocular muscle spasm treatment is the intramuscular injection of botulinum toxin (BTX), which allows the maintenance of the muscle dynamics and the absence of scars. However, the main BTX disadvantage is its nonpermanent effect. A possible way for overcoming this obstacle could be represented by the enzymatic surgery using plant toxins known as ribosome-inactivating proteins (RIPs). In this paper, two highly toxic RIPs, namely, ricin and stenodactylin, were considered in a preliminary study for their possible use in the treatment of strabismus and oculofacial dystonias, as alternatives to BTX. Both RIPs showed a strong cytotoxic effect against rhabdomyosarcoma cell lines and myotube differentiated cells, with stenodactylin being about 10-fold more toxic than ricin. Moreover, stenodactylin showed a much higher cytotoxicity on myoblasts than on rhabdomyosarcoma cells. In our experimental conditions, stenodactylin did not damage conjunctival cells. Despite the limitations due to in vitro experiments, our data show that the high cytotoxicity of stenodactylin allows the use of a very low dose and, consequently, of very low injection volumes. This can represent a great advantage in the case of in vivo locoregional treatment. Furthermore, it is possible to modulate the chemoablation of myocytes while destroying myoblasts, thus reducing regenerative phenomena. The risk of cytotoxicity to surrounding tissues would be strongly reduced by the low injected volume and the relative resistance of conjunctival cells. In conclusion, our data suggest that stenodactylin and ricin could represent potential candidates to substitute BTX in ocular dystonia therapy.

Plant Toxins as Potential Alternatives to Botulinum Toxin for Eye-Movement Disorder Therapy

Massimo Bortolotti
Primo
;
Andrea Zanello
Secondo
;
Lorenzo Serra;Francesco Biscotti;Letizia Polito
Penultimo
;
Andrea Bolognesi
Ultimo
2023

Abstract

The most successful alternative to traditional surgery for ocular muscle spasm treatment is the intramuscular injection of botulinum toxin (BTX), which allows the maintenance of the muscle dynamics and the absence of scars. However, the main BTX disadvantage is its nonpermanent effect. A possible way for overcoming this obstacle could be represented by the enzymatic surgery using plant toxins known as ribosome-inactivating proteins (RIPs). In this paper, two highly toxic RIPs, namely, ricin and stenodactylin, were considered in a preliminary study for their possible use in the treatment of strabismus and oculofacial dystonias, as alternatives to BTX. Both RIPs showed a strong cytotoxic effect against rhabdomyosarcoma cell lines and myotube differentiated cells, with stenodactylin being about 10-fold more toxic than ricin. Moreover, stenodactylin showed a much higher cytotoxicity on myoblasts than on rhabdomyosarcoma cells. In our experimental conditions, stenodactylin did not damage conjunctival cells. Despite the limitations due to in vitro experiments, our data show that the high cytotoxicity of stenodactylin allows the use of a very low dose and, consequently, of very low injection volumes. This can represent a great advantage in the case of in vivo locoregional treatment. Furthermore, it is possible to modulate the chemoablation of myocytes while destroying myoblasts, thus reducing regenerative phenomena. The risk of cytotoxicity to surrounding tissues would be strongly reduced by the low injected volume and the relative resistance of conjunctival cells. In conclusion, our data suggest that stenodactylin and ricin could represent potential candidates to substitute BTX in ocular dystonia therapy.
2023
Massimo Bortolotti, Andrea Zanello, Lorenzo Serra, Francesco Biscotti, Letizia Polito, Andrea Bolognesi
File in questo prodotto:
File Dimensione Formato  
50_Bortolotti et al_Stresses_2023.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/918994
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact