We prove a Harnack inequality for positive solutions of a parabolic equation with slow anisotropic spatial diffusion. After identifying its natural scalings, we reduce the problem to a Fokker–Planck equation and construct a selfsimilar Barenblatt solution. We exploit translation invariance to obtain positivity near the origin via a self-iteration method and deduce a sharp anisotropic expansion of positivity. This eventually yields a scale invariant Harnack inequality in an anisotropic geometry dictated by the speed of the diffusion coefficients. As a corollary, we infer Holder continuity, an elliptic Harnack inequality and a Liouville theorem.

Ciani S., Mosconi S., Vespri V. (2023). Parabolic Harnack Estimates for anisotropic slow diffusion. JOURNAL D'ANALYSE MATHEMATIQUE, 149(2), 611-642 [10.1007/s11854-022-0261-0].

Parabolic Harnack Estimates for anisotropic slow diffusion

Ciani S.;Vespri V.
2023

Abstract

We prove a Harnack inequality for positive solutions of a parabolic equation with slow anisotropic spatial diffusion. After identifying its natural scalings, we reduce the problem to a Fokker–Planck equation and construct a selfsimilar Barenblatt solution. We exploit translation invariance to obtain positivity near the origin via a self-iteration method and deduce a sharp anisotropic expansion of positivity. This eventually yields a scale invariant Harnack inequality in an anisotropic geometry dictated by the speed of the diffusion coefficients. As a corollary, we infer Holder continuity, an elliptic Harnack inequality and a Liouville theorem.
2023
Ciani S., Mosconi S., Vespri V. (2023). Parabolic Harnack Estimates for anisotropic slow diffusion. JOURNAL D'ANALYSE MATHEMATIQUE, 149(2), 611-642 [10.1007/s11854-022-0261-0].
Ciani S.; Mosconi S.; Vespri V.
File in questo prodotto:
File Dimensione Formato  
2012.09685.pdf

Open Access dal 05/01/2024

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 421.97 kB
Formato Adobe PDF
421.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/918910
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact