A non-linear spectroscopic study of the HDO molecule is performed in the wavelength range of 1.36-1.42 mu m using noise-immune cavity-enhanced optical-heterodyne molecular spectroscopy (NICE-OHMS). More than 100 rovibrational Lamb dips are recorded, with an experimental precision of 2-20 kHz, related to the first overtone of the O-H stretch fundamental of HD16O and HD18O. Significant perturbations, including distortions, shifts, and splittings, have been observed for a number of Lamb dips. These spectral perturbations are traced back to an AC-Stark effect, arising due to the strong laser field applied in all saturation-spectroscopy experiments. The AC-Stark effect mixes parity pairs, that is pairs of rovibrational states whose assignment differs solely in the Kc quantum number, where Kc is part of the standard JKa,Kc asymmetric-top rotational label. Parity-pair mixing seems to be especially large for parity pairs with Ka >= 3, whereby their energy splittings become as small as a few MHz, resulting in multi-component asymmetric Lamb-dip profiles of gradually increasing complexity. These complex profiles often include crossover resonances. This effect is well known in saturation spectroscopy, but has not been reported in combination with parity-pair mixing. Parity-pair mixing is not seen in H216O and H 18 2 O, because their parity pairs correspond to ortho and para nuclear-spin isomers, whose interaction is prohibited. Despite the frequency shifts observed for HD16O and HD18O, the absolute accuracy of the detected transitions still exceeds that achievable by Doppler-limited techniques. (c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

Parity-pair-mixing effects in nonlinear spectroscopy of HDO

Puzzarini, Cristina;
2022

Abstract

A non-linear spectroscopic study of the HDO molecule is performed in the wavelength range of 1.36-1.42 mu m using noise-immune cavity-enhanced optical-heterodyne molecular spectroscopy (NICE-OHMS). More than 100 rovibrational Lamb dips are recorded, with an experimental precision of 2-20 kHz, related to the first overtone of the O-H stretch fundamental of HD16O and HD18O. Significant perturbations, including distortions, shifts, and splittings, have been observed for a number of Lamb dips. These spectral perturbations are traced back to an AC-Stark effect, arising due to the strong laser field applied in all saturation-spectroscopy experiments. The AC-Stark effect mixes parity pairs, that is pairs of rovibrational states whose assignment differs solely in the Kc quantum number, where Kc is part of the standard JKa,Kc asymmetric-top rotational label. Parity-pair mixing seems to be especially large for parity pairs with Ka >= 3, whereby their energy splittings become as small as a few MHz, resulting in multi-component asymmetric Lamb-dip profiles of gradually increasing complexity. These complex profiles often include crossover resonances. This effect is well known in saturation spectroscopy, but has not been reported in combination with parity-pair mixing. Parity-pair mixing is not seen in H216O and H 18 2 O, because their parity pairs correspond to ortho and para nuclear-spin isomers, whose interaction is prohibited. Despite the frequency shifts observed for HD16O and HD18O, the absolute accuracy of the detected transitions still exceeds that achievable by Doppler-limited techniques. (c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
2022
Diouf, Meissa L; Tóbiás, Roland; Cozijn, Frank M J; Salumbides, Edcel J; Fábri, Csaba; Puzzarini, Cristina; Császár, Attila G; Ubachs, Wim
File in questo prodotto:
File Dimensione Formato  
parity-pir-mixing_HDO.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 3.71 MB
Formato Adobe PDF
3.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/918907
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact