We perform a data-driven dimensionality reduction of the scale-dependent four-point vertex function characterizing the functional renormalization group (FRG) flow for the widely studied two-dimensional t -t0 Hubbard model on the square lattice. We demonstrate that a deep learning architecture based on a neural ordinary differential equation solver in a low-dimensional latent space efficiently learns the FRG dynamics that delineates the various magnetic and d-wave superconducting regimes of the Hubbard model. We further present a dynamic mode decomposition analysis that confirms that a small number of modes are indeed sufficient to capture the FRG dynamics. Our Letter demonstrates the possibility of using artificial intelligence to extract compact representations of the four-point vertex functions for correlated electrons, a goal of utmost importance for the success of cutting-edge quantum field theoretical methods for tackling the many-electron problem.

Deep Learning the Functional Renormalization Group / Di Sante, Domenico; Medvidović, Matija; Toschi, Alessandro; Sangiovanni, Giorgio; Franchini, Cesare; Sengupta, Anirvan M; Millis, Andrew J. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - ELETTRONICO. - 129:13(2022), pp. 136402.1-136402.7. [10.1103/PhysRevLett.129.136402]

Deep Learning the Functional Renormalization Group

Di Sante, Domenico
;
Franchini, Cesare;
2022

Abstract

We perform a data-driven dimensionality reduction of the scale-dependent four-point vertex function characterizing the functional renormalization group (FRG) flow for the widely studied two-dimensional t -t0 Hubbard model on the square lattice. We demonstrate that a deep learning architecture based on a neural ordinary differential equation solver in a low-dimensional latent space efficiently learns the FRG dynamics that delineates the various magnetic and d-wave superconducting regimes of the Hubbard model. We further present a dynamic mode decomposition analysis that confirms that a small number of modes are indeed sufficient to capture the FRG dynamics. Our Letter demonstrates the possibility of using artificial intelligence to extract compact representations of the four-point vertex functions for correlated electrons, a goal of utmost importance for the success of cutting-edge quantum field theoretical methods for tackling the many-electron problem.
2022
Deep Learning the Functional Renormalization Group / Di Sante, Domenico; Medvidović, Matija; Toschi, Alessandro; Sangiovanni, Giorgio; Franchini, Cesare; Sengupta, Anirvan M; Millis, Andrew J. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - ELETTRONICO. - 129:13(2022), pp. 136402.1-136402.7. [10.1103/PhysRevLett.129.136402]
Di Sante, Domenico; Medvidović, Matija; Toschi, Alessandro; Sangiovanni, Giorgio; Franchini, Cesare; Sengupta, Anirvan M; Millis, Andrew J
File in questo prodotto:
File Dimensione Formato  
Di Sante et al. - 2022 - Deep Learning the Functional Renormalization Group.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 921.39 kB
Formato Adobe PDF
921.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/918775
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 8
social impact