We perform a data-driven dimensionality reduction of the scale-dependent four-point vertex function characterizing the functional renormalization group (FRG) flow for the widely studied two-dimensional t -t0 Hubbard model on the square lattice. We demonstrate that a deep learning architecture based on a neural ordinary differential equation solver in a low-dimensional latent space efficiently learns the FRG dynamics that delineates the various magnetic and d-wave superconducting regimes of the Hubbard model. We further present a dynamic mode decomposition analysis that confirms that a small number of modes are indeed sufficient to capture the FRG dynamics. Our Letter demonstrates the possibility of using artificial intelligence to extract compact representations of the four-point vertex functions for correlated electrons, a goal of utmost importance for the success of cutting-edge quantum field theoretical methods for tackling the many-electron problem.
Di Sante, D., Medvidović, M., Toschi, A., Sangiovanni, G., Franchini, C., Sengupta, A.M., et al. (2022). Deep Learning the Functional Renormalization Group. PHYSICAL REVIEW LETTERS, 129(13), 1-7 [10.1103/PhysRevLett.129.136402].
Deep Learning the Functional Renormalization Group
Di Sante, Domenico
;Franchini, Cesare;
2022
Abstract
We perform a data-driven dimensionality reduction of the scale-dependent four-point vertex function characterizing the functional renormalization group (FRG) flow for the widely studied two-dimensional t -t0 Hubbard model on the square lattice. We demonstrate that a deep learning architecture based on a neural ordinary differential equation solver in a low-dimensional latent space efficiently learns the FRG dynamics that delineates the various magnetic and d-wave superconducting regimes of the Hubbard model. We further present a dynamic mode decomposition analysis that confirms that a small number of modes are indeed sufficient to capture the FRG dynamics. Our Letter demonstrates the possibility of using artificial intelligence to extract compact representations of the four-point vertex functions for correlated electrons, a goal of utmost importance for the success of cutting-edge quantum field theoretical methods for tackling the many-electron problem.File | Dimensione | Formato | |
---|---|---|---|
Di Sante et al. - 2022 - Deep Learning the Functional Renormalization Group.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso libero gratuito
Dimensione
921.39 kB
Formato
Adobe PDF
|
921.39 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.