We establish an area formula for the spherical measure of intrinsically regular submanifolds of low codimension in Heisenberg groups. The spherical measure is constructed by an arbitrary homogeneous distance. Among the arguments of the proof, we point out the differentiability properties of intrinsic graphs and a chain rule for intrinsically differentiable functions.

Francesca Corni, Valentino Magnani (2023). Area formula for regular submanifolds of low codimension in Heisenberg groups. ADVANCES IN CALCULUS OF VARIATIONS, 16(3), 665-688 [10.1515/acv-2021-0049].

Area formula for regular submanifolds of low codimension in Heisenberg groups

Francesca Corni;
2023

Abstract

We establish an area formula for the spherical measure of intrinsically regular submanifolds of low codimension in Heisenberg groups. The spherical measure is constructed by an arbitrary homogeneous distance. Among the arguments of the proof, we point out the differentiability properties of intrinsic graphs and a chain rule for intrinsically differentiable functions.
2023
Francesca Corni, Valentino Magnani (2023). Area formula for regular submanifolds of low codimension in Heisenberg groups. ADVANCES IN CALCULUS OF VARIATIONS, 16(3), 665-688 [10.1515/acv-2021-0049].
Francesca Corni; Valentino Magnani
File in questo prodotto:
File Dimensione Formato  
10.1515_acv-2021-0049.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 934.91 kB
Formato Adobe PDF
934.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/918667
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact