Searching in a large data set those strings that are more similar, according to the edit distance, to a given one is a time-consuming process. In this paper we investigate the performance of metric trees, namely the M-tree, when they are extended using a cheap approximate distance function as a filter to quickly discard irrelevant strings. Using the bag distance as an approximation of the edit distance, we show an improvement in performance up to 90% with respect to the basic case. This, along with the fact that our solution is independent on both the distance used in the pre-test and on the underlying metric index, demonstrates that metric indices are a powerful solution, not only for many modern application areas, as multimedia, data mining and pattern recognition, but also for the string matching problem.
Bartolini I., Ciaccia P., Patella M. (2002). String matching with metric trees using an approximate distance. Springer Verlag [10.1007/3-540-45735-6_24].
String matching with metric trees using an approximate distance
Bartolini I.;Ciaccia P.;Patella M.
2002
Abstract
Searching in a large data set those strings that are more similar, according to the edit distance, to a given one is a time-consuming process. In this paper we investigate the performance of metric trees, namely the M-tree, when they are extended using a cheap approximate distance function as a filter to quickly discard irrelevant strings. Using the bag distance as an approximation of the edit distance, we show an improvement in performance up to 90% with respect to the basic case. This, along with the fact that our solution is independent on both the distance used in the pre-test and on the underlying metric index, demonstrates that metric indices are a powerful solution, not only for many modern application areas, as multimedia, data mining and pattern recognition, but also for the string matching problem.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.