Images that have been contaminated by various kinds of blur and noise can be restored by the minimization of an ℓp-ℓq functional. The quality of the reconstruction depends on the choice of a regularization parameter. Several approaches to determine this parameter have been described in the literature. This work presents a numerical comparison of known approaches as well as of a new one.
Buccini A., Pragliola M., Reichel L., Sgallari F. (2022). A comparison of parameter choice rules for ℓp - ℓq minimization. ANNALI DELL'UNIVERSITÀ DI FERRARA. SEZIONE 7: SCIENZE MATEMATICHE, 68(2), 441-463 [10.1007/s11565-022-00430-9].
A comparison of parameter choice rules for ℓp - ℓq minimization
Sgallari F.
2022
Abstract
Images that have been contaminated by various kinds of blur and noise can be restored by the minimization of an ℓp-ℓq functional. The quality of the reconstruction depends on the choice of a regularization parameter. Several approaches to determine this parameter have been described in the literature. This work presents a numerical comparison of known approaches as well as of a new one.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s11565-022-00430-9.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
876.98 kB
Formato
Adobe PDF
|
876.98 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.