We consider generalized homogeneous roofs, i.e. quotients of simply connected, semisimple Lie groups by a parabolic subgroup, which admit two projective bundle structures. Given a general hyperplane section on such a variety, we study the zero loci of its pushforwards along the projective bundle structures and we discuss their properties at the level of Hodge structures. In the case of the flag variety F(1,2,n) with its projections to DOUBLE-STRUCK CAPITAL Pn- 1 and G(2,n), we construct a derived embedding of the relevant zero loci by methods based on the study of B-brane categories in the context of a gauged linear sigma model.

Fatighenti E., Kapustka M., Mongardi G., Rampazzo M. (2023). The Generalized Roof F(1, 2,n): Hodge Structures and Derived Categories. ALGEBRAS AND REPRESENTATION THEORY, 26(6), 2313-2342 [10.1007/s10468-022-10173-y].

The Generalized Roof F(1, 2,n): Hodge Structures and Derived Categories

Fatighenti E.
;
Kapustka M.;Mongardi G.;Rampazzo M.
2023

Abstract

We consider generalized homogeneous roofs, i.e. quotients of simply connected, semisimple Lie groups by a parabolic subgroup, which admit two projective bundle structures. Given a general hyperplane section on such a variety, we study the zero loci of its pushforwards along the projective bundle structures and we discuss their properties at the level of Hodge structures. In the case of the flag variety F(1,2,n) with its projections to DOUBLE-STRUCK CAPITAL Pn- 1 and G(2,n), we construct a derived embedding of the relevant zero loci by methods based on the study of B-brane categories in the context of a gauged linear sigma model.
2023
Fatighenti E., Kapustka M., Mongardi G., Rampazzo M. (2023). The Generalized Roof F(1, 2,n): Hodge Structures and Derived Categories. ALGEBRAS AND REPRESENTATION THEORY, 26(6), 2313-2342 [10.1007/s10468-022-10173-y].
Fatighenti E.; Kapustka M.; Mongardi G.; Rampazzo M.
File in questo prodotto:
File Dimensione Formato  
Algebr-Represent-Theor22.pdf

Open Access dal 16/11/2023

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 481.05 kB
Formato Adobe PDF
481.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/916667
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact