We apply singularity analysis to a caricature of the simplified multistrain model of Castillo-Chavez and Feng (J Math Biol 35 (1997) 629-656) for the transmission of tuberculosis and the coupled two-stream vector-based model of Feng and Velasco-Hernandez (J Math Biol 35 (1997) 523-544) to identify values of the parameters for which the system of nonlinear first-order ordinary differential equations describing the model are integrable. A number of combinations of parameters for which the system is integrable are identified. We compare them with the results we obtained by a symmetry analysis in an earlier paper (J Math Anal Appl 333 (2007) 430-449.

NUCCI, M.C., P. G. L. LEACH (2008). Singularity Analysis and Integrability of a Simplified Multistrain Model for the Transmission of Tuberculosis and Dengue Fever. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 15(1), 22-34 [10.2991/jnmp.2008.15.1.3].

Singularity Analysis and Integrability of a Simplified Multistrain Model for the Transmission of Tuberculosis and Dengue Fever

NUCCI, Maria Clara;
2008

Abstract

We apply singularity analysis to a caricature of the simplified multistrain model of Castillo-Chavez and Feng (J Math Biol 35 (1997) 629-656) for the transmission of tuberculosis and the coupled two-stream vector-based model of Feng and Velasco-Hernandez (J Math Biol 35 (1997) 523-544) to identify values of the parameters for which the system of nonlinear first-order ordinary differential equations describing the model are integrable. A number of combinations of parameters for which the system is integrable are identified. We compare them with the results we obtained by a symmetry analysis in an earlier paper (J Math Anal Appl 333 (2007) 430-449.
2008
NUCCI, M.C., P. G. L. LEACH (2008). Singularity Analysis and Integrability of a Simplified Multistrain Model for the Transmission of Tuberculosis and Dengue Fever. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 15(1), 22-34 [10.2991/jnmp.2008.15.1.3].
NUCCI, Maria Clara; P. G. L. LEACH
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/916357
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact