In this Letter a first-order Lagrangian for the Schroedinger–Newton equations is derived by modifying a second-order Lagrangian proposed by Christian [Exactly soluble sector of quantum gravity, Phys. Rev. D 56(8) (1997) 4844–4877]. Then Noether’s theorem is applied to the Lie point symmetries determined by Robertshaw and Tod [Lie point symmetries and an approximate solution for the Schroedinger–Newton equations, Nonlinearity 19(7) (2006) 1507–1514] in order to find conservation laws of the Schroedinger–Newton equations.

Conservation laws for the Schrödinger-Newton equations

M. C. NUCCI
2012

Abstract

In this Letter a first-order Lagrangian for the Schroedinger–Newton equations is derived by modifying a second-order Lagrangian proposed by Christian [Exactly soluble sector of quantum gravity, Phys. Rev. D 56(8) (1997) 4844–4877]. Then Noether’s theorem is applied to the Lie point symmetries determined by Robertshaw and Tod [Lie point symmetries and an approximate solution for the Schroedinger–Newton equations, Nonlinearity 19(7) (2006) 1507–1514] in order to find conservation laws of the Schroedinger–Newton equations.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/916333
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact