A transformation is derived which takes the Lorenz integrable system into the well-known Euler equations of a torque-free rigid body about a fixed point, i.e., the famous motion a la Poinsot. The proof is based on Lie group analysis applied to two third-order ordinary differential equations admitting the same two-dimensional Lie symmetry algebra. Lie's classification of two-dimensional symmetry algebras in the plane is used. If the same transformation is applied to the Lorenz system with any values of the parameters, then one obtains Euler equations of a rigid body about a fixed point subjected to a torsion depending on time and angular velocity. The numerical solution of this system yields a three-dimensional picture which looks like a "tornado" the cross-section of which has a butterfly-shape. Thus Lorenz's butterfly has been transformed into a tornado. (C) 2003 American Institute of Physics.

NUCCI, M.C. (2003). Lorenz integrable system moves a` la Poinsot. JOURNAL OF MATHEMATICAL PHYSICS, 44(9), 4107-4118 [10.1063/1.1599955].

Lorenz integrable system moves a` la Poinsot

NUCCI, Maria Clara
2003

Abstract

A transformation is derived which takes the Lorenz integrable system into the well-known Euler equations of a torque-free rigid body about a fixed point, i.e., the famous motion a la Poinsot. The proof is based on Lie group analysis applied to two third-order ordinary differential equations admitting the same two-dimensional Lie symmetry algebra. Lie's classification of two-dimensional symmetry algebras in the plane is used. If the same transformation is applied to the Lorenz system with any values of the parameters, then one obtains Euler equations of a rigid body about a fixed point subjected to a torsion depending on time and angular velocity. The numerical solution of this system yields a three-dimensional picture which looks like a "tornado" the cross-section of which has a butterfly-shape. Thus Lorenz's butterfly has been transformed into a tornado. (C) 2003 American Institute of Physics.
2003
NUCCI, M.C. (2003). Lorenz integrable system moves a` la Poinsot. JOURNAL OF MATHEMATICAL PHYSICS, 44(9), 4107-4118 [10.1063/1.1599955].
NUCCI, Maria Clara
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/916170
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact