We consider the n-dimensional ladder system, that is the homogeneous quadratic system of first-order differential equations of the form (x)over dot (i) = x(i) Sigma(j=1)(n) a(ij)xj, i = 1, n, where (a(ij)) = (i + j), i, j = 1, n, introduced by Imai and Hirata (2002 Preprint nlin.SI/0212007 v1 3). The ladder system is found to be integrable for all n in terms of the Painleve analysis and its solution is explicitly given.

Andriopoulos K., Leach P., NUCCI, M.C. (2003). The ladder problem: Painleve' integrability and explicit solution. JOURNAL OF PHYSICS. A, MATHEMATICAL AND GENERAL, 36(44), 11257-11265 [10.1088/0305-4470/36/44/006].

The ladder problem: Painleve' integrability and explicit solution

NUCCI, Maria Clara
2003

Abstract

We consider the n-dimensional ladder system, that is the homogeneous quadratic system of first-order differential equations of the form (x)over dot (i) = x(i) Sigma(j=1)(n) a(ij)xj, i = 1, n, where (a(ij)) = (i + j), i, j = 1, n, introduced by Imai and Hirata (2002 Preprint nlin.SI/0212007 v1 3). The ladder system is found to be integrable for all n in terms of the Painleve analysis and its solution is explicitly given.
2003
Andriopoulos K., Leach P., NUCCI, M.C. (2003). The ladder problem: Painleve' integrability and explicit solution. JOURNAL OF PHYSICS. A, MATHEMATICAL AND GENERAL, 36(44), 11257-11265 [10.1088/0305-4470/36/44/006].
Andriopoulos K.; Leach P.; NUCCI, Maria Clara
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/916167
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact