A review of the role of symmetries in solving differential equations is presented. After showing some recent results on the application of classical Lie point symmetries to problems in fluid draining, meteorology, and epidemiology of AIDS, the nonclassical symmetries method is presented. Finally it is shown that iterations of the nonclassical symmetries method yield new nonlinear equations, which inherit the Lie symmetry algebra of the given equation. Invariant solutions of these equations supply new solutions of the original equation. Furthermore, the equations yield both partial symmetries as given by Vorobev, and differential constraints as given by Vorobev and by Olver. Some examples are given. The importance of using ad hoc interactive REDUCE programs is underlined.

NUCCI, M.C. (1997). The role of symmetries in solving differential equations. MATHEMATICAL AND COMPUTER MODELLING, 25(8-9), 181-193 [10.1016/S0895-7177(97)00068-X].

The role of symmetries in solving differential equations

NUCCI, Maria Clara
1997

Abstract

A review of the role of symmetries in solving differential equations is presented. After showing some recent results on the application of classical Lie point symmetries to problems in fluid draining, meteorology, and epidemiology of AIDS, the nonclassical symmetries method is presented. Finally it is shown that iterations of the nonclassical symmetries method yield new nonlinear equations, which inherit the Lie symmetry algebra of the given equation. Invariant solutions of these equations supply new solutions of the original equation. Furthermore, the equations yield both partial symmetries as given by Vorobev, and differential constraints as given by Vorobev and by Olver. Some examples are given. The importance of using ad hoc interactive REDUCE programs is underlined.
1997
NUCCI, M.C. (1997). The role of symmetries in solving differential equations. MATHEMATICAL AND COMPUTER MODELLING, 25(8-9), 181-193 [10.1016/S0895-7177(97)00068-X].
NUCCI, Maria Clara
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/916148
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact