A series of pi-extended distyryl-substituted boron dipyrromethene (BODIPY) derivatives with intense far-red/near-infrared (NIR) fluorescence was synthesized and characterized, with a view to enhance the dye's performance for fluorescence labeling. An enhanced brightness was achieved by the introduction of two methyl substituents in the meso positions on the phenyl group of the BODIPY molecule; these substituents resulted in increased structural rigidity. Solid-state fluorescence was observed for one of the distyryl-substituted BODIPY derivatives. The introduction of a terminal bromo substituent allows for the subsequent immobilization of the BODIPY fluorophore on the surface of carbon nano-onions (CNOs), which leads to potential imaging agents for biological and biomedical applications. The farred/NIR-fluorescent CNO nanoparticles were characterized by absorption, fluorescence, and Raman spectroscopies, as well as by thermogravimetric analysis, dynamic light scattering, high-resolution transmission electron microscopy, and confocal microscopy.

Bartelmess, J., Baldrighi, M., Nardone, V., Parisini, E., Buck, D., Echegoyen, L., et al. (2015). Synthesis and Characterization of Far-Red/NIR-Fluorescent BODIPY Dyes, Solid-State Fluorescence, and Application as Fluorescent Tags Attached to Carbon Nano-onions. CHEMISTRY-A EUROPEAN JOURNAL, 21(27), 9727-9732 [10.1002/chem.201500877].

Synthesis and Characterization of Far-Red/NIR-Fluorescent BODIPY Dyes, Solid-State Fluorescence, and Application as Fluorescent Tags Attached to Carbon Nano-onions

Parisini, Emilio;
2015

Abstract

A series of pi-extended distyryl-substituted boron dipyrromethene (BODIPY) derivatives with intense far-red/near-infrared (NIR) fluorescence was synthesized and characterized, with a view to enhance the dye's performance for fluorescence labeling. An enhanced brightness was achieved by the introduction of two methyl substituents in the meso positions on the phenyl group of the BODIPY molecule; these substituents resulted in increased structural rigidity. Solid-state fluorescence was observed for one of the distyryl-substituted BODIPY derivatives. The introduction of a terminal bromo substituent allows for the subsequent immobilization of the BODIPY fluorophore on the surface of carbon nano-onions (CNOs), which leads to potential imaging agents for biological and biomedical applications. The farred/NIR-fluorescent CNO nanoparticles were characterized by absorption, fluorescence, and Raman spectroscopies, as well as by thermogravimetric analysis, dynamic light scattering, high-resolution transmission electron microscopy, and confocal microscopy.
2015
Bartelmess, J., Baldrighi, M., Nardone, V., Parisini, E., Buck, D., Echegoyen, L., et al. (2015). Synthesis and Characterization of Far-Red/NIR-Fluorescent BODIPY Dyes, Solid-State Fluorescence, and Application as Fluorescent Tags Attached to Carbon Nano-onions. CHEMISTRY-A EUROPEAN JOURNAL, 21(27), 9727-9732 [10.1002/chem.201500877].
Bartelmess, Juergen; Baldrighi, Michele; Nardone, Valentina; Parisini, Emilio; Buck, David; Echegoyen, Luis; Giordani, Silvia
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/915514
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 44
social impact