In many applications of conformal field theory one encounters twisted conformal fields, i.e. fields which have branch cut singularities on the relevant Riemann surfaces. We present a geometrical framework describing twisted conformal fields on Riemann surfaces of arbitrary genus which is alternative to the standard method of coverings. We further illustrate the theory of twisted Grassmannians and its relation with the representation theory of the twisted oscillator algebras. As an application of the above, we expound an operator formalism for orbifold strings. © 1990 Springer-Verlag.

Zucchini R. (1990). An operator formulation of orbifold conformal field theory. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 129(1), 43-68 [10.1007/BF02096778].

An operator formulation of orbifold conformal field theory

Zucchini R.
Primo
1990

Abstract

In many applications of conformal field theory one encounters twisted conformal fields, i.e. fields which have branch cut singularities on the relevant Riemann surfaces. We present a geometrical framework describing twisted conformal fields on Riemann surfaces of arbitrary genus which is alternative to the standard method of coverings. We further illustrate the theory of twisted Grassmannians and its relation with the representation theory of the twisted oscillator algebras. As an application of the above, we expound an operator formalism for orbifold strings. © 1990 Springer-Verlag.
1990
Zucchini R. (1990). An operator formulation of orbifold conformal field theory. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 129(1), 43-68 [10.1007/BF02096778].
Zucchini R.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/915447
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact