We continue the model independent study of the Polyakov action on an arbitrary compact surface without boundary of genus larger than 2 as the general solution of the relevant conformal Ward identity. A general formula for the Polyakov action and an explicit calculation of the energy-momentum tensor density is provided. It is further shown how Polyakov's SL(2,C) symmetry emerges in a curved base surface. © 1993 Springer-Verlag.

Zucchini R. (1993). A Polyakov action on Riemann surfaces (II). COMMUNICATIONS IN MATHEMATICAL PHYSICS, 152(2), 269-297 [10.1007/BF02098300].

A Polyakov action on Riemann surfaces (II)

Zucchini R.
Primo
1993

Abstract

We continue the model independent study of the Polyakov action on an arbitrary compact surface without boundary of genus larger than 2 as the general solution of the relevant conformal Ward identity. A general formula for the Polyakov action and an explicit calculation of the energy-momentum tensor density is provided. It is further shown how Polyakov's SL(2,C) symmetry emerges in a curved base surface. © 1993 Springer-Verlag.
1993
Zucchini R. (1993). A Polyakov action on Riemann surfaces (II). COMMUNICATIONS IN MATHEMATICAL PHYSICS, 152(2), 269-297 [10.1007/BF02098300].
Zucchini R.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/915441
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact