In this study, we use zeolite Y as a support for the synthesis of Sn and Ga doped zeolites aimed at the isomerization of glucose to fructose. Though these materials are inactive in water, they are active in methanol and we could ascertain a reaction pathway involving a hydride shift for the interconversion of glucose to fructose and mannose, and a Brønsted acid pathway with the formation of a methyl fructoside intermediate and its hydrolysis to fructose if water was added afterwards. By using characterizations comprising: chemisorption, XPS, XRD, HAADF-STEM and EXAFS; it was possible to demonstrate that a straightforward impregnation protocol for the preparation of our catalysts, led to Sn/Y mainly consisting of small SnO2 clusters on the external surface of the zeolite, whereas Ga/Y consisting of highly dispersed Ga species mostly inside the zeolite pores; and a catalytic activity that appears to be dominated by Brønsted acid sites.
Mohamed M.M. Kashbor, D.S. (2022). Conversion of glucose to fructose over Sn and Ga-doped zeolite Y in methanol and water media. APPLIED CATALYSIS A: GENERAL, 642, 1-11 [10.1016/j.apcata.2022.118689].
Conversion of glucose to fructose over Sn and Ga-doped zeolite Y in methanol and water media
Carmine D’Agostino;
2022
Abstract
In this study, we use zeolite Y as a support for the synthesis of Sn and Ga doped zeolites aimed at the isomerization of glucose to fructose. Though these materials are inactive in water, they are active in methanol and we could ascertain a reaction pathway involving a hydride shift for the interconversion of glucose to fructose and mannose, and a Brønsted acid pathway with the formation of a methyl fructoside intermediate and its hydrolysis to fructose if water was added afterwards. By using characterizations comprising: chemisorption, XPS, XRD, HAADF-STEM and EXAFS; it was possible to demonstrate that a straightforward impregnation protocol for the preparation of our catalysts, led to Sn/Y mainly consisting of small SnO2 clusters on the external surface of the zeolite, whereas Ga/Y consisting of highly dispersed Ga species mostly inside the zeolite pores; and a catalytic activity that appears to be dominated by Brønsted acid sites.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.