We show that any subset of the natural numbers with positive logarithmic Banach density contains a set that is within a factor of two of a geometric progression, improving the bound on a previous result of the authors. Density conditions on subsets of the natural numbers that imply the existence of approximate powers of arithmetic progressions are developed and explored

Di Nasso M, Goldbring I, Jin R, Leth S, Lupini M, Mahlburg K (2016). Approximate polynomial structure in additively large sets. INTEGERS, 16, 1-11.

Approximate polynomial structure in additively large sets

Lupini M;
2016

Abstract

We show that any subset of the natural numbers with positive logarithmic Banach density contains a set that is within a factor of two of a geometric progression, improving the bound on a previous result of the authors. Density conditions on subsets of the natural numbers that imply the existence of approximate powers of arithmetic progressions are developed and explored
2016
Di Nasso M, Goldbring I, Jin R, Leth S, Lupini M, Mahlburg K (2016). Approximate polynomial structure in additively large sets. INTEGERS, 16, 1-11.
Di Nasso M; Goldbring I; Jin R; Leth S; Lupini M; Mahlburg K
File in questo prodotto:
File Dimensione Formato  
Di Nasso et al. - 2016 - Approximate polynomial structure in additively lar.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 389.63 kB
Formato Adobe PDF
389.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/914626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact