In 1998, Kirchberg and Wassermann constructed a separable nuclear operator system with the property that the canonical unital ∗-homomorphism from the maximal C∗-algebra onto the C∗-envelope is injective. We show that such an operator system is unique, and completely order isomorphic to the operator system associated with the noncommutative Poulsen simplex.

Lupini M (2018). The Kirchberg-Wassermann operator system is unique. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 459(2), 1251-1259 [10.1016/j.jmaa.2017.11.026].

The Kirchberg-Wassermann operator system is unique

Lupini M
2018

Abstract

In 1998, Kirchberg and Wassermann constructed a separable nuclear operator system with the property that the canonical unital ∗-homomorphism from the maximal C∗-algebra onto the C∗-envelope is injective. We show that such an operator system is unique, and completely order isomorphic to the operator system associated with the noncommutative Poulsen simplex.
2018
Lupini M (2018). The Kirchberg-Wassermann operator system is unique. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 459(2), 1251-1259 [10.1016/j.jmaa.2017.11.026].
Lupini M
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/914516
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact