We prove that if S is a commutative semigroup with well-founded universal semilattice or a solvable inverse semigroup with well-founded semilattice of idempotents, then every strongly productive ultrafilter on S is idempotent. Moreover we show that any very strongly productive ultrafilter on the free semigroup with countably many generators is sparse, answering a question of Hindman and Legette Jones.

Fernandez Breton D J, Lupini M (2016). Strongly productive ultrafilters on semigroups. SEMIGROUP FORUM, 92(1), 242-257 [10.1007/s00233-015-9746-9].

Strongly productive ultrafilters on semigroups

Lupini M
2016

Abstract

We prove that if S is a commutative semigroup with well-founded universal semilattice or a solvable inverse semigroup with well-founded semilattice of idempotents, then every strongly productive ultrafilter on S is idempotent. Moreover we show that any very strongly productive ultrafilter on the free semigroup with countably many generators is sparse, answering a question of Hindman and Legette Jones.
2016
Fernandez Breton D J, Lupini M (2016). Strongly productive ultrafilters on semigroups. SEMIGROUP FORUM, 92(1), 242-257 [10.1007/s00233-015-9746-9].
Fernandez Breton D J; Lupini M
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/914512
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact